

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH16) Paper 01 Practical Skills in Physics II

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022

Question Paper Log Number P70959A

Publications Code WPH16_01_2201_MS

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the
 answer matches the mark scheme. Examiners should also be
 prepared to award zero marks if the candidate's response is not
 worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
1 (a)	To ensure the pressure remains constant Or To keep the pressure at atmospheric pressure [Accept to allow room for the air to expand]	1
1 (b)	(The boiling water may make) the air expand too quickly Or (The boiling water may make) the air expand too much (So) the sulfuric acid could escape (1)	2
1 (c)(i)	Stir the water (1) Place the thermometer close to the capillary tube (1)	2
1 (c)(ii)	There are too few readings Or The range of temperatures is too small (1)	
	To draw an accurate best fit line Or To be certain of a linear relationship (1)	
	Which may lead to inaccuracy in the value of θ (1)	3
	MP3 dependent on MP1 OR MP2	
	Total for question	8

Question Number	Answer		Mark
2 (a)	Measure the length of tube x using a (metre) rule	(1)	
	Ensure the tube is vertical with a set square Or		
	Release the magnet from the top of the tube	(1)	
	Measure t using a stopwatch [Accept alternative valid timing methods]	(1)	
	Repeat measurement of time and calculate a mean	(1)	
	Repeat for at least 5 values of x	(1)	
	Plot a graph of t^2 against x to check the gradient (which is $\frac{1}{2}a$) is constant Or		
	Plot a graph of t^2 against x to check it is a straight line	(1)	6
	Accept alternative graphs. Do not accept gradient = g		
2 (b)	Any PAIR from:		
	If the magnet is not aligned with the top of the tube when released	(1)	
	So the magnet would have a velocity when entering the tube	(1)	
	Or		
	It would be difficult to judge when the magnet is about to leave the tube	(1)	
	So this would add to the time	(1)	
	Or		
	The magnet could touch the sides of the tube and experience friction	(1)	
	So the time would increase	(1)	
	Or		
	The length of the tube may vary around the circumference	(1)	
	So this may introduce random error	(1)	2
	Total for question		8

Question Number	Answer		Mark
3 (a)	Any TWO from		
	Handle the source using long tongs	(1)	
	Keep the source in a lead-lined box when not in use	(1)	
	Maintain a distance from the source when in use	(1)	
	Use the source for as short a time as possible	(1)	2
	Do not accept answers relating to PPE		
3 (b)	Background count rate should be subtracted from measured count rate	(1)	
	Background radiation adds a constant amount to the overall count rate Or		
	It is a systematic error	(1)	2
3 (c)	The gradient of the graph is $-\lambda$	(1)	
	As $\ln C = \ln C_0 - \lambda t$ is in the form $y = c + mx$		
	Or As $\ln C = -\lambda t + \ln C_0$ is in the form $y = mx + c$	(1)	2
	[Accept alternative letters for m and c]		
3 (d)(i)	ln C values correct to 2 d.p. Accept 3 d.p.	(1)	
	Axes labelled: y as $\ln(C/s^{-1})$ and x as t /hours	(1)	
	Most appropriate scales for both axes	(1)	
	Plots accurate to ± 1mm	(1)	
	Straight best fit line with even spread of plots in region $t \ge 4$ hours	(1)	5
3 (d)(ii)	Correct calculation of gradient using large triangle shown	(1)	
	Value of λ in range 0.064 to 0.072 (h ⁻¹)	(1)	
	Value of λ given as positive, to 2 or 3 s.f.	(1)	3
	Example of calculation		
	gradient = $((5.38 - 4.54) / (0 - 12.4) = -0.84 / 12.4 = -0.068$		
	$\lambda = 0.068 \text{ hr}^{-1}$		
3 (d)(iii)	Use of $t_{1/2} = \ln 2 / \lambda$	(1)	
()()	Value of $t_{\frac{1}{2}}$ given 2 or 3 s.f., with correct unit ecf from (d)(ii)	(1)	2
	Example of calculation	. ,	
	$t_{1/2} = \ln 2 / \lambda = \ln 2 / 0.068 = 10.2 \text{ hours}$		
	Total for question		16

t / hours	C / s ⁻¹	ln (C / s ⁻¹)	ln (C/s ⁻¹)
0	633	6.45	6.450
2	217	5.38	5.380
4	167	5.12	5.118
6	140	4.94	4.942
8	126	4.84	4.836
10	107	4.67	4.673
12	98	4.58	4.585

Question Number	Answer		Mark
4 (a)(i)	Any TWO from		
	Place the rule as close as possible to the ramp	(1)	
	Use a set square to ensure the rule is vertical		
	Or Use a spirit level to ensure the rule is vertical	(1)	
	Ensure the rule reads zero at the bench	(1)	
	Read the scale perpendicularly		
	Or Use a set square to read value from the scale	(1)	2
4 (a)(ii)	The uncertainty of each measurement is half the resolution of the ruler (which is 0.5 mm) Or		
	The resolution of the ruler is 1 mm so the uncertainty is 0.5 mm	(1)	
	As values of h are subtracted the uncertainty is 0.5 mm + 0.5 mm = 1 mm	(1)	2
	Accept $2 \times 0.5 \text{mm} = 1 \text{ mm}$		
4 (b)(i)	Mean value of $t = 1.95$ s	(1)	
	Correct uncertainty from half range shown		
	Or Correct uncertainty from furthest from the mean shown	(1)	2
	Consect uncorruntly from furthess from the incum shown	(1)	_
	Example of calculation		
	Mean $t = (2.10 + 1.86 + 1.94 + 1.89)$ s / $4 = 7.79$ s / $4 = 1.95$ s		
	Uncertainty = $(2.10 - 1.86)$ s /2 = 0.12 s		
4 (b)(ii)	The values of t will increase		
	Or The cylinder will move more slowly	(1)	
	So the percentage uncertainty in t will reduce		
	Or It will be easier to judge when the cylinder crosses the finish line		
	Or	(1)	_
	The effect of reaction time will be reduced	(1)	2
4 (c)	Both have the same level of accuracy as the means are the same	(1)	
	But cannot tell if they are close to the true value	(1)	
	Student B has a smaller range than Student A	(1)	
	Therefore Student B is more precise	(1)	4
	Accept converse, MP4 dependent MP3		

Total for question		18
Accept comparisons to $g = 9.8 \text{ m s}^{-2}$		
As the $\%D$ is less than $\%U$ then the value of g is accurate.		
%U = 5.9%		
Example of calculation		
MP2 dependent MP1		
Correct calculation of %D shown e.c.f. (d)(i) Valid conclusion based on comparison of %D to %U e.c.f. (d)(ii)		
Or		
As the accepted value of g of 9.81 m s ⁻² lies within the lower limit then the value is accurate.		
Lower limit = $10.0 \times (100 - 5.9)/100 = 9.4 \text{ m s}^{-2}$		
Example of calculation %U = 5.9%		
MP2 dependent MP1		
Valid conclusion based on comparison of limit to $g = 9.81 \text{ m s}^{-2}$	(1)	2
Correct value of relevant limit e.c.f. (d)(i) and (d)(ii)	(1)	
= 0.25% + 3.28% + 2.33% = 5.9%		
%U = 2 × (0.1 / 80) × 100% + 2 × (0.04 / 2.44) × 100% + (1 / 43) × 100%		
Example of calculation		
%U = 5.9 % Accept 6% or 5.85 %	(1)	2
Use of $2 \times \%U$ in s and $2 \times \%U$ in t	(1)	
$g - 4s^{-}/t = (4 \times 0.8^{-}\text{m}^{-})/(2.44^{-}\text{s}^{-} \times 0.043\text{m}) - 2.36\text{m}^{-}/(0.236\text{m}) = 10.0 \text{ m/s}^{-}$		
1		
$g = 10.0 \text{ m s}^2$ Accept 10 m s^{-2} , dependent MP1	(1)	2
	Example of calculation $g = 4s^2 / t^2 h = (4 \times 0.8^2 \text{m}^2)/(2.44^2 \text{s}^2 \times 0.043 \text{m}) = 2.56 \text{m}^2 / 0.256 \text{m s}^2 = 10.0 \text{ m s}^{-2}$ Use of 2× %U in s and 2 × %U in t %U = 5.9 % Accept 6% or 5.85 % Example of calculation %U = 2 × (0.1 / 80) × 100% + 2 × (0.04 / 2.44) × 100% + (1 / 43) × 100% = 0.25% + 3.28% + 2.33% = 5.9 % Correct value of relevant limit c.c.f. (d)(i) and (d)(ii) Valid conclusion based on comparison of limit to $g = 9.81 \text{ m s}^{-2}$ MP2 dependent MP1 Example of calculation %U = 5.9% Lower limit = $10.0 \times (100 - 5.9)/100 = 9.4 \text{ m s}^{-2}$ As the accepted value of g of 9.81 m s ⁻² lies within the lower limit then the value is accurate. Or Correct calculation of %D shown e.c.f. (d)(i) Valid conclusion based on comparison of %D to %U e.c.f. (d)(ii) MP2 dependent MP1 Example of calculation %U = 5.9% %D = $(10.0 - 9.81)/9.81 \times 100\% = 1.9\%$ As the %D is less than %U then the value of g is accurate. Accept comparisons to $g = 9.8 \text{ m s}^{-2}$	Example of calculation $g = 4s^2 / t^2 h = (4 \times 0.8^2 \text{m}^2)/(2.44^2 \text{s}^2 \times 0.043 \text{m}) = 2.56 \text{m}^2 / 0.256 \text{m s}^2 = 10.0 \text{ m s}^{-2}$ Use of $2 \times \% U$ in s and $2 \times \% U$ in t (1) $\% U = 5.9 \%$ Accept 6% or 5.85% (1) Example of calculation $\% U = 2 \times (0.1 / 80) \times 100\% + 2 \times (0.04 / 2.44) \times 100\% + (1 / 43) \times 100\% = 0.25\% + 3.28\% + 2.33\% = 5.9 \%$ Correct value of relevant limit c.c.f. (d)(i) and (d)(ii) (1) Valid conclusion based on comparison of limit to $g = 9.81 \text{ m s}^{-2}$ (1) MP2 dependent MP1 Example of calculation $\% U = 5.9\%$ Lower limit = $10.0 \times (100 - 5.9)/100 = 9.4 \text{ m s}^{-2}$ As the accepted value of g of 9.81 m s^{-2} lies within the lower limit then the value is accurate. Or Correct calculation of $\% D$ shown c.c.f. (d)(i) Valid conclusion based on comparison of $\% D$ to $\% U$ c.c.f. (d)(ii) MP2 dependent MP1 Example of calculation $\% U = 5.9\%$ $\% D = (10.0 - 9.81)/9.81 \times 100\% = 1.9\%$ As the $\% D$ is less than $\% U$ then the value of g is accurate. Accept comparisons to $g = 9.8 \text{ m s}^{-2}$