

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
PHYSICS		9702/23
Paper 2 AS St	tructured Questions	October/November 2014
		1 hou
Candidates an	swer on the Question Paper.	
No Additional I	Materials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Data

speed of light in free space,	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space,	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H} \mathrm{m}^{-1}$
permittivity of free space,	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$
	$(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{mF^{-1}})$
elementary charge,	$e = 1.60 \times 10^{-19} \mathrm{C}$
the Planck constant,	$h = 6.63 \times 10^{-34} \mathrm{Js}$
unified atomic mass constant,	$u = 1.66 \times 10^{-27} \text{ kg}$
rest mass of electron,	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$
rest mass of proton,	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant,	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
the Avogadro constant,	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
the Boltzmann constant,	$k = 1.38 \times 10^{-23} \mathrm{JK^{-1}}$
gravitational constant,	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
acceleration of free fall,	$g = 9.81 \text{ m s}^{-2}$

Formulae

uniformly accelerated motion,	$s = ut + \frac{1}{2}at^2$
	$v^2 = u^2 + 2as$

work done on/by a gas,
$$W = p\Delta V$$

gravitational potential,
$$\phi = -\frac{Gm}{r}$$

hydrostatic pressure,
$$p = \rho gh$$

pressure of an ideal gas,
$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

simple harmonic motion,
$$a = -\omega^2 x$$

velocity of particle in s.h.m.,
$$v = v_0 \cos \omega t$$

$$v = \pm \omega \sqrt{(x_0^2 - x^2)}$$

electric potential,
$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

capacitors in series,
$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel,
$$C = C_1 + C_2 + \dots$$

energy of charged capacitor,
$$W = \frac{1}{2}QV$$

resistors in series,
$$R = R_1 + R_2 + \dots$$

resistors in parallel,
$$1/R = 1/R_1 + 1/R_2 + \dots$$

alternating current/voltage,
$$x = x_0 \sin \omega t$$

radioactive decay,
$$X = X_0 \exp(-\lambda t)$$

decay constant,
$$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$$

Answer **all** the questions in the spaces provided.

1

(a)	The kilogram, metre and second are	SI base units.	
	State two other base units.		
	1		
	2		
(b)	Determine the SI base units of		[2]
	(i) stress,		
	(ii) the Young modulus.	SI base units	.[2]
		SI base units	.[1]

2 A microphone detects a musical note of frequency f. The microphone is connected to a cathoderay oscilloscope (c.r.o.). The signal from the microphone is observed on the c.r.o. as illustrated in Fig. 2.1.

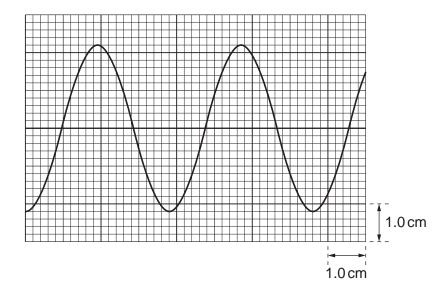


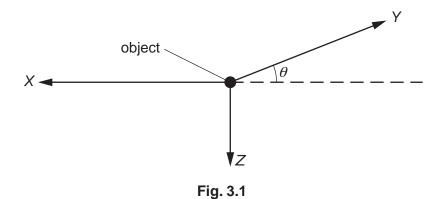
Fig. 2.1

The time-base setting of the c.r.o. is 0.50 ms cm⁻¹. The Y-plate setting is 2.5 mV cm⁻¹.

- (a) Use Fig. 2.1 to determine
 - (i) the amplitude of the signal,

(ii) the frequency f,

$$f =$$
 Hz [3]


(iii) the actual uncertainty in *f* caused by reading the scale on the c.r.o.

(b) State *f* with its actual uncertainty.

3 (a) Force is a vector quantity. State three other vector quantities.

1.	
2	
۷.	
3.	
	rs

(b) Three coplanar forces *X*, *Y* and *Z* act on an object, as shown in Fig. 3.1.

The force Z is vertical and X is horizontal. The force Y is at an angle θ to the horizontal. The force Z is kept constant at 70 N.

In an experiment, the magnitude of force *X* is varied. The magnitude and direction of force *Y* are adjusted so that the object remains in equilibrium.

Fig. 3.2 shows the variation of the magnitude of force Y with the magnitude of force X.

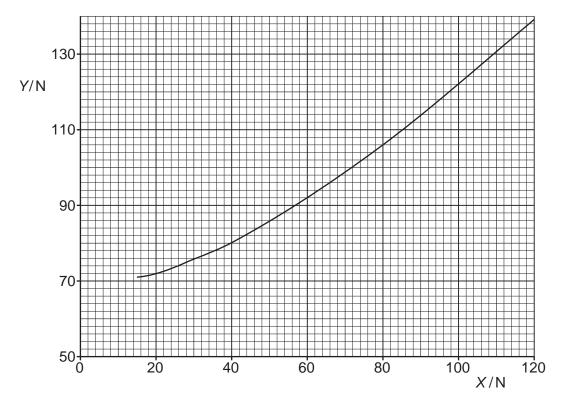


Fig. 3.2

(i)	Use	e Fig. 3.2	2 to estim	ate the r	magnitud	de of Y	for $X =$	0.				
							Y=					N [1]
(ii)	Sta	ite and e	xplain the	e value c	of θ for X	= 0.						
												
(111)	of	e magniti	ude of X	is increa	sed to 1	60 N. C	Jse reso	olution	of force	s to cal	culate th	ne value
	1.	angle 6	9,									
							0					0.[0]
	2	tho ma	anitudo o	f force \	/		θ=					° [2]
	۷.	lile illa	giiitude o	i iorce i								
							Υ=					N [2]
The	e and	gle $ heta$ dec	reases a	ıs <i>X</i> incr	eases. E	Explain						
						•	j	,-			•	
												[11
	(ii)	(iii) Sta (iii) The of 1.	 (iii) State and e (iii) The magnitude 1. angle θ 	 (iii) State and explain the form of the following state and explain the following st	 (ii) State and explain the value of	 (iii) State and explain the value of θ for X (iii) The magnitude of X is increased to 1 of 1. angle θ, 2. the magnitude of force Y. 	 (ii) State and explain the value of θ for X = 0. (iii) The magnitude of X is increased to 160 N. L of 1. angle θ, 2. the magnitude of force Y. 	(iii) State and explain the value of θ for $X=0$	(iii) State and explain the value of θ for $X=0$	(ii) State and explain the value of θ for $X=0$. (iii) The magnitude of X is increased to 160 N. Use resolution of force of 1. angle θ , 2. the magnitude of force Y . Y=	(iii) State and explain the value of θ for $X=0$. (iii) The magnitude of X is increased to 160 N. Use resolution of forces to calc of 1. angle θ , 2. the magnitude of force Y. Y=	(iii) State and explain the value of θ for $X=0$. (iii) The magnitude of X is increased to 160 N. Use resolution of forces to calculate the of the magnitude of X is increased to 160 N. Use resolution of forces to calculate the of the magnitude of force Y . 2. the magnitude of force Y . Y=

4	(2)	State th	a principle of cons	convention of	momontur	0				
•	(a)	State III	e principle of cons	er valion of	momentui	11.				
										[2]
	(b)		K and a ball Y are n Fig. 4.1.	e travelling a	along the	same sti	raight line in	the same	directior	n, as
		X		Y						
		400 g	— ≻ 0.65 m s ^{−1}	600 g	→ 0.45 m:	s ⁻¹				
				_	Fig. 4.1					
			as mass 400 g and as mass 600 g and							
			atches up and colli as horizontal veloc				n, X has horiz	ontal veloc	ity 0.41 r	m s ⁻¹
						X 400 a	- → 0.41 m s ⁻¹		Y 600 g	→ <i>V</i>
					Fig. 4.2	1009	0.411110		300 g	V
		Calavila	4.0		1 19. 7.2					
		Calcula								
		(i) the	total initial mome	ntum of the	two balls,					
					momentu	ım =			N	s [3]
		(ii) the	velocity v,							
						v =			ms	⁻¹ [2]

(iii)	the total initial kinetic energy of the two balls.

	kinetic energy = J [3]
(c)	Explain how you would check whether the collision is elastic.
	[1]
(d)	Use Newton's third law to explain why, during the collision, the change in momentum of X is equal and opposite to the change in momentum of Y.
	[2]

BLANK PAGE

5	Distinguish between evaporation and boiling.
	evaporation:
	boiling:
	[4]

6 (a) A wire has length 100 cm and diameter 0.38 mm. The metal of the wire has resistivity $4.5 \times 10^{-7} \Omega$ m.

Show that the resistance of the wire is 4.0Ω .

[3]

(b) The ends B and D of the wire in (a) are connected to a cell X, as shown in Fig. 6.1.

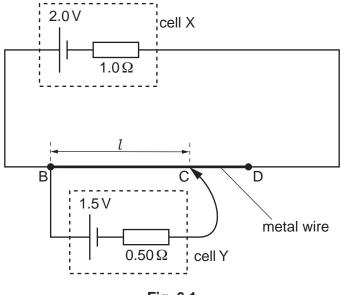


Fig. 6.1

The cell X has electromotive force (e.m.f.) 2.0V and internal resistance $1.0\,\Omega$.

A cell Y of e.m.f. 1.5V and internal resistance $0.50\,\Omega$ is connected to the wire at points B and C, as shown in Fig. 6.1.

The point C is distance *l* from point B. The current in cell Y is zero.

Calculate

(i) the current in cell X,

current = A [2]

(ii)	the potential difference (p.d.) across the wire BD,
(i	ii)	p.d. =
		<i>l</i> = cm [2]
		connection at C is moved so that $\it l$ is increased. Explain why the e.m.f. of cell Y is less its terminal p.d.
		[2]

7	(a)	(i)	Explain what is meant by a <i>progressive transverse</i> wave.
			progressive:
			transverse:
			[2]
		(ii)	Define frequency.
			[1]
	(b)	The	variation with distance x of displacement y for a transverse wave is shown in Fig. 7.1.
		<i>y</i> /	2.0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
			Fig. 7.1
			Fig. 7.1, five points are labelled.
		(i)	Fig. 7.1 to state any two points having a phase difference of zero,
		(-)	[1]
		(ii)	270°.
			[1]
	(c)		frequency of the wave in (b) is 15 Hz.
		Cal	culate the speed of the wave in (b) .

 $speed = \dots ms^{-1} [3]$

© UCLES 2014

(d) Two waves of the same frequency have amplitudes 1.4 cm and 2.1 cm.

Calculate the ratio	
Calculate the fatte	intensity of wave of amplitude 1.4 cm intensity of wave of amplitude 2.1 cm
	ratio =[2]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.