UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level | CANDIDATE
NAME | | | | | |-------------------|--|---------------------|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | * 290041731 PHYSICS 9702/42 Paper 4 A2 Structured Questions October/November 2010 1 hour 45 minutes Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Exam | For Examiner's Use | | | |----------|--------------------|--|--| | 1 | | | | | 2 | | | | | 3 | | | | | 4 | | | | | 5 | | | | | 6 | | | | | 7 | | | | | 8 | | | | | 9 | | | | | 10 | | | | | 11 | | | | | 12 | | | | | Total | | | | | • | | | | This document consists of 24 printed pages. $g = 9.81 \text{ m s}^{-2}$ # Data acceleration of free fall, | $c = 3.00 \times 10^8 \mathrm{ms^{-1}}$ | |---| | $\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$ | | $\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$ | | $e = 1.60 \times 10^{-19} \text{ C}$ | | $h = 6.63 \times 10^{-34} \mathrm{Js}$ | | $u = 1.66 \times 10^{-27} \text{ kg}$ | | $m_{\rm e} = 9.11 \times 10^{-31} \rm kg$ | | $m_{\rm p} = 1.67 \times 10^{-27} \mathrm{kg}$ | | $R = 8.31 \mathrm{JK^{-1}mol^{-1}}$ | | $N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$ | | $k = 1.38 \times 10^{-23} \mathrm{JK^{-1}}$ | | $G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$ | | | ## **Formulae** | uniformly | accelerated | motion, | |-----------|-------------|---------| |-----------|-------------|---------| $$s = ut + \frac{1}{2}at^2$$ $$v^2 = u^2 + 2as$$ $$W = p\Delta V$$ $$\phi = -\frac{Gm}{r}$$ hydrostatic pressure, $$p = \rho g h$$ pressure of an ideal gas, $$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$ simple harmonic motion, $$a = -\omega^2 x$$ velocity of particle in s.h.m., $$v = v_0 \cos \omega t$$ $$v = \pm \omega \sqrt{(x_0^2 - x^2)}$$ electric potential, $$V = \frac{Q}{4\pi\varepsilon_0 r}$$ capacitors in series, $$1/C = 1/C_1 + 1/C_2 + \dots$$ capacitors in parallel, $$C = C_1 + C_2 + \dots$$ energy of charged capacitor, $$W = \frac{1}{2} QV$$ resistors in series, $$R = R_1 + R_2 + \dots$$ resistors in parallel, $$1/R = 1/R_1 + 1/R_2 + \dots$$ alternating current/voltage, $$x = x_0 \sin \omega t$$ radioactive decay, $$x = x_0 \exp(-\lambda t)$$ decay constant, $$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$$ #### Section A Answer all the questions in the spaces provided. For Examiner's Use **(b)** An isolated star has radius *R*. The mass of the star may be considered to be a point mass at the centre of the star. The gravitational field strength at the surface of the star is g_s . On Fig. 1.1, sketch a graph to show the variation of the gravitational field strength of the star with distance from its centre. You should consider distances in the range R to 4R. Fig. 1.1 [2] **(c)** The Earth and the Moon may be considered to be spheres that are isolated in space with their masses concentrated at their centres. The masses of the Earth and the Moon are $6.00 \times 10^{24} \, \mathrm{kg}$ and $7.40 \times 10^{22} \, \mathrm{kg}$ respectively. The radius of the Earth is $R_{\rm E}$ and the separation of the centres of the Earth and the Moon is $60\,R_{\rm E}$, as illustrated in Fig. 1.2. Fig. 1.2 (not to scale) 9702/42/O/N/10 | (1) | gravitati | • | | ro. | tne | Earth | and | tne | Moon | at | wnich | tne | |-----|-----------|---|------|------|-----|-------|-----|-----|------|----|-------|-----| | | | |
 |
 | | | | | | | | | | | | |
 |
 | | | | | | | | | | | | |
 |
 | | | | | | | | [2] | (ii) Determine the distance, in terms of $R_{\rm E}$, from the centre of the Earth at which the gravitational field strength is zero. distance = R_E [3] (iii) On the axes of Fig. 1.3, sketch a graph to show the variation of the gravitational field strength with position between the surface of the Earth and the surface of the Moon. Fig. 1.3 [3] 2 (a) (i) State the basic assumption of the kinetic theory of gases that leads to the conclusion that the potential energy between the atoms of an ideal gas is zero. [1] (ii) State what is meant by the *internal energy* of a substance. [2] (iii) Explain why an increase in internal energy of an ideal gas is directly related to a rise in temperature of the gas. (b) A fixed mass of an ideal gas undergoes a cycle PQRP of changes as shown in Fig. 2.1. Fig. 2.1 © UCLES 2010 9702/42/O/N/10 | | | | , | | | |-------|-------------------|-------------------------|-----------------------------|---------------------------------|-------| | (i) | State the char | nge in internal energy | y of the gas during o | ne complete cycle Po | QRP. | | | | | change = | | J [1] | | (ii) | Calculate the | work done on the ga | s during the change | from P to Q. | work done = | | J [2] | | (iii) | Some energy | changes during the | cycle PQRP are sho | wn in Fig. 2.2. | | | | change | work done on gas
/ J | heating supplied to gas / J | increase in internal energy / J | | | | $P \rightarrow Q$ | | -600 | | | Fig. 2.2 +720 +480 Complete Fig. 2.2 to show all of the energy changes. 0 [3] **3** A student sets up the apparatus illustrated in Fig. 3.1 in order to investigate the oscillations of a metal cube suspended on a spring. For Examiner's Use Fig. 3.1 The amplitude of the vibrations produced by the oscillator is constant. The variation with frequency of the amplitude of the oscillations of the metal cube is shown in Fig. 3.2. Fig. 3.2 | (a) | (i) | State the | phenomenon | illustrated in | n Fig. 3.2. | |-----|-----|-----------|------------|----------------|-------------| |-----|-----|-----------|------------|----------------|-------------|[1] (ii) For the maximum amplitude of vibration, state the magnitudes of the amplitude and the frequency. amplitude = mm frequency = Hz [1] | (b) | The oscillations of the metal cube of mass 150 g may be assumed to be simple harmonic. Use your answers in (a)(ii) to determine, for the metal cube, | For
Examiner's
Use | |-----|--|--------------------------| | | (i) its maximum acceleration, | | | | acceleration = | | | (c) | force = | | | | | | | t | | solated metal sphere has a radius r . When charged to a potential V , the charge sphere is q . | |-----|------|--| | - | The | charge may be considered to act as a point charge at the centre of the sphere. | | (| (i) | State an expression, in terms of r and q , for the potential V of the sphere. | | | | | | (| (ii) | This isolated sphere has capacitance. Use your answers in (a) and (b)(i) to sh that the capacitance of the sphere is proportional to its radius. | (c) | The | sphere in (b) has a capacitance of 6.8 pF and is charged to a potential of 220 V. | | | Calc | culate | | (| | the radius of the sphere, | | | (i) | | | | (ii) the charge, in coulomb, on the s | sphere. | |-----|--|--| charge = C [1] | | | | | | (d) | A second uncharged metal sphere is
The combined capacitance of the tw | s brought up to the sphere in (c) so that they touch. o spheres is 18 pF. | | | Calculate | | | | (i) the potential of the two spheres | | | | | , | notontial V/ [4] | | | | potential =V [1] | | | (ii) the change in the total energy s | tored on the spheres when they touch. | change - Light | | | | change = J [3] | Positive ions are travelling through a vacuum in a narrow beam. The ions enter a region of uniform magnetic field of flux density *B* and are deflected in a semi-circular arc, as shown in Fig. 5.1. For Examiner's Use Fig. 5.1 The ions, travelling with speed $1.40 \times 10^5 \, \text{m} \, \text{s}^{-1}$, are detected at a fixed detector when the diameter of the arc in the magnetic field is 12.8 cm. (a) By reference to Fig. 5.1, state the direction of the magnetic field. | [1] | |-----| |-----| **(b)** The ions have mass 20 u and charge $+1.6 \times 10^{-19}$ C. Show that the magnetic flux density is 0.454 T. Explain your working. [3] | (c) | lons of mass 22 u with the same charge and speed as those in (b) are also present in the beam. | | | | | | | |-----|---|---|--|--|--|--|--| | | (i) | On Fig. 5.1, sketch the path of these ions in the magnetic field of magnetic flux density 0.454 T. [1] | | | | | | | | (ii) | In order to detect these ions at the fixed detector, the magnetic flux density is changed. Calculate this new magnetic flux density. | | | | | | | | | magnetic flux density = T [2] | | | | | | **6** A simple iron-cored transformer is illustrated in Fig. 6.1. Fig. 6.1 | (a) (i) | State why the primary and secondary coils are wound on a core made of iron. | |---------|---| | | | | | | | | [1] | | (ii) | Suggest why thermal energy is generated in the core when the transformer is in use. | | | | | | | | | | | | [3] | | (b) | resp | root-mean-square (r.m.s.) voltage and current in the primary coil are $V_{\rm P}$ and $I_{\rm P}$ bectively. r.m.s. voltage and current in the secondary coil are $V_{\rm S}$ and $I_{\rm S}$ respectively. | For
Examiner's
Use | |-----|------|--|--------------------------| | | (i) | Explain, by reference to direct current, what is meant by the <i>root-mean-square</i> value of an alternating current. | | | | | | | | | | [2] | | | | (ii) | Show that, for an ideal transformer, | | | | | $\frac{V_{S}}{V_{P}} = \frac{I_{P}}{I_{S}}.$ | | [2] | 7 | (a) | Sta | te an effect, one in the wave nature o | of a particle, | at provides evidence for | |---|-----|------|--|------------------|--| | | | (ii) | | ture of electror | nagnetic radiation. | | | (b) | Fou | | | m are shown in Fig. 7.1. | | | | | † | | -0.87 × 10 ⁻¹⁹ J | | | | | | | | | | | | electron
energy | | | | | | | | | | | | | | I | | -5.44 × 10 ^{−19} J | | | | | | Fig. 7.1 | (not to scale) | | | | leve | | is associated | with the electron transitions between these energy | | | | (i) | state the number | of lines, | | | | | (ii) | calculate the mini | | [1]
gth. | wavelength = m [2] | 8 | In s | ome power stations, nuclear fission is used as a source of energy. | |------|---| | (a) | State what is meant by <i>nuclear fission</i> . | | | | | | | | | [2] | | (b) | The nuclear fission reaction produces neutrons. In the power station, the neutrons may be absorbed by rods made of boron-10. Complete the nuclear equation for the absorption of a single neutron by a boron-10 nucleus with the emission of an $\alpha\text{-particle}.$ | | | $^{10}_{5}B + \dots \rightarrow ^{10}_{3}Li + \dots $ [3] | | (c) | Suggest why, when neutrons are absorbed in the boron rods, the rods become hot as a result of this nuclear reaction. | | | | | | | | | | | | [3] | ## Section B For Examiner's Use Answer all the questions in the spaces provided. **9** An amplifier circuit incorporating an operational amplifier (op-amp) is shown in Fig. 9.1. Fig. 9.1 - (a) State - (i) the name of this type of amplifier circuit,[1] (ii) the gain G in terms of resistances R_1 and R_2 . [1] | (b) | · ((DD) | | | For
Examiner's
Use | |-----|----------|---|--------------------------|--------------------------| | | (i) | 100 Ω (the LDR is in sunlight), | | | | | (ii) | 1.0 $M\Omega$ (the LDR is in darkness). | V _{OUT} = V [2] | | | | | | V _{OUT} = V [1] | | | 10 | (a) | (i) | State what is meant by the acoustic impedance of a medium. | | |----|-----|-----|--|---| | | | | | 1 | | | | | | | | | | | [1] | | (ii) Data for some media are given in Fig. 10.1. | medium | speed of ultrasound
/ m s ⁻¹ | acoustic impedance
/ kg m ⁻² s ⁻¹ | |-----------------------------------|--|---| | air
gel
soft tissue
bone | 330
1500
1600
4100 | 4.3×10^{2} 1.5×10^{6} 1.6×10^{6} 7.0×10^{6} | Fig. 10.1 Use data from Fig. 10.1 to calculate a value for the density of bone. density = \dots kg m⁻³ [1] **(b)** A parallel beam of ultrasound has intensity *I*. It is incident at right-angles to a boundary between two media, as shown in Fig. 10.2. Fig. 10.2 The media have acoustic impedances of Z_1 and Z_2 . The transmitted intensity of the ultrasound beam is I_T and the reflected intensity is I_R . (i) State the relation between *I*, *I*_T and *I*_R. | | (ii) | The reflection coefficient α is given by the ex | pression | |-----|------|--|--| | | | $\alpha = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}.$ | | | | | Use data from Fig. 10.1 to determine the r between | reflection coefficient α for a boundary | | | | 1. gel and soft tissue, | <i>α</i> =[2] | | | | 2. air and soft tissue. | <i>α</i> =[1] | | (c) | | reference to your answers in (b)(ii) , explain the ring ultrasound diagnosis. | he use of a gel on the surface of skin | | | | | | | | | | | | 11 | (a) | nois | e pairs provide one means of communication but they are subject to high levels of se and attenuation. Ilain what is meant by | |----|-----|------|--| | | | (i) | noise, | | | | | [1] | | | | (ii) | attenuation. | | | | | [1] | | | (b) | A m | icrophone is connected to a receiver using a wire pair, as shown in Fig. 11.1. | | | | | wire pair | | | | r | receiver | | | | | Fig. 11.1 | | | | wire | wire pair has an attenuation per unit length of $12dBkm^{-1}$. The noise power in the pair is $3.4\times10^{-9}W$. | | | | (i) | Calculate the maximum length of the wire pair so that the minimum signal-to-noise ratio is 24 dB. | length = m [4] | | | | (ii) | Communication over distances greater than that calculated in (i) is required. Suggest how the circuit of Fig. 11.1 may be modified so that the minimum signal-to-noise ratio at the receiver is not reduced. | | | | | | | | | | | | | | | [2] | | 12 | (a) | Earth. | For
Examiner's
Use | |----|-----|--------|--------------------------| [4] | | Question 12 continues on the next page. | (b) | Polar-orbiting satellites are also used for communication on Earth. State and explain one advantage and one disadvantage of polar-orbiting satellites as compared with geostationary satellites. | For
Examiner's
Use | |-----|--|--------------------------| | | advantage: | | | | | | | | | | | | disadvantage: | | | | disadvantage | | | | | | | | | | | | [4] | | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.