

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME										
CENTRE NUMBER						CANDIDATE NUMBER				
MATHEMATICS									97	09/72
Paper 7 Probabili	ity & St	atistics 2	2 (S2)				Feb	ruary/	Marcl	n 201 9
							1	hour	15 m	inutes
Candidates answe	er on th	ne Quest	ion Pa	per.						
Additional Materia	als:	List of I	ormul	ae (MF	- 9)					

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

BLANK PAGE

(i)	Calculate a 98% confidence interval for the population mean mass.	
		•••••
		••••••
		••••••
(::)	State with a mass on whather it was a consequent a very the Control I invit the array in the	1 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
(11)	State with a reason whether it was necessary to use the Central Limit theorem in the in part (i).	carcurat
		••••••
		•••••

respectively. Find $P(X > 3Y)$.	
	•••••

	g distribution to less than at fa		% significance		the mean num	ibution. Use ber of accide
	•••••				•••••	
••••••	•••••					
•••••	•••••	•••••	••••••	••••••		••••••
		•••••	••••••			
•••••••	•••••			••••••	••••••	
						•••••
	•••••	•••••	••••••		•••••	•••••
	•••••				•••••	

The lifetimes, X hours, of a random sample of 50 batteries of a certain kind were found. The results are summarised by $\Sigma x = 420$ and $\Sigma x^2 = 27530$.
(i) Calculate an unbiased estimate of the population mean of <i>X</i> and show that an unbiased estimate of the population variance is 490, correct to 3 significant figures. [3]

\overline{X} , was found.	. Use your es	timates fr	om part (i) to find	the value o	of <i>n</i> such th	$at P(\overline{X} > 3)$	5) = 0.9377 [4
			••••••	•••••				
•••••		•••••	•••••	•••••	•••••	•••••		
••••								
,		•••••						
		••••••		•••••	••••••	••••••	••••••	••••••
				•••••	•••••	•••••		
		•••••		•••••			•••••	
		•••••		•••••			•••••	
,	· • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••	•••••	••••••	•••••

The number of eagles seen per hour in a certain location has the distribution Po(1.8). The number of

1)	Find the probability that, in a randomly chosen hour, at least 2 eagles are seen.	[2
		••••••
		••••••
	Find the probability that, in a randomly chosen half-hour period, the total number of vultures seen is less than 5.	eagles an [3

		•••••
		•••••
		•••••
		•••••
Alex	x wants to be at least 99% certain of seeing at least 1 eagle.	
(iii)	Find the minimum time for which she should watch for eagles.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

in m time by Σ	time taken by volunteers to complete a certain task is normally distributed. In the past the time, inutes, has had mean 91.4 and standard deviation 6.4. A new, similar task is introduced and the s, t minutes, taken by a random sample of 6 volunteers to complete the new task are summarised $t = 568.5$. Andrea plans to carry out a test, at the 5% significance level, of whether the mean time he new task is different from the mean time for the old task.
(i)	Give a reason why Andrea should use a two-tail test. [1]
(ii)	State the probability that a Type I error is made, and explain the meaning of a Type I error in this context.

You may assume that the times taken for the new task are normally distributed.

(iii)	Stating another necessary assumption, carry out the test.	[7]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		,

A random variable X has probability density function given by

$$f(x) = \begin{cases} (\sqrt{2})\cos x & 0 \le x \le \frac{1}{4}\pi, \\ 0 & \text{otherwise,} \end{cases}$$

as shown in the diagram.

(i)	Find $P(X > \frac{1}{6}\pi)$.	[2]
(ii)	Find the median of X .	[4]

and $E(X)$.	[4]
	•••••
	•••••
	•••••
	••••••
	•••••
	••••••
	••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.