

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

9 2 8 5 5 0 8 1 6 2

COMPUTER SCIENCE

9618/33

Paper 3 Advanced Theory

October/November 2023

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

- 1 Real numbers are stored in a computer using floating-point representation with:
 - 12 bits for the mantissa
 - 4 bits for the exponent
 - two's complement form for both the mantissa and exponent.
 - (a) Write the normalised floating-point representation of +65.25 in this system.

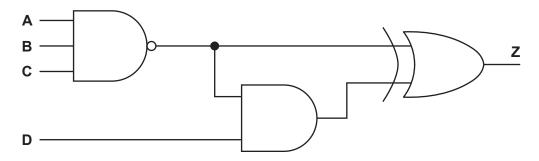
Show your working.

	Wantissa								Exponent										
	Working																		
						• • • • • • •													[3]
(b)	Explain t				at wi	ll occ	cur ir	n sto	ring 1	the n	orma	alised	l floa	iting-	poin	t rep	resei	ntati	on of
								•••••											
																			[2]

Use

2 (a) Draw one line to connect each protocol to its most appropriate use.

Protocol


	HTTP		to provide peer-to-peer file sharing	
	BitTorrent]	when retrieving email messages from a mail server over a TCP/IP connection	
]	when transmitting hypertext documents	
	SMTP		to map MAC addresses onto IP addresses	
	IMAP		when sending email messages towards	
			the intended destination	
(b)	Outline the pur	pose of the Link la	ayer in the TCP/IP protocol suite.	
	cribe what is m	eant by enumerate	ed and pointer data types.	
Point	ter			

4 (a)	Describe sequential and random methods of file organisation.
	Sequential file organisation
	Random file organisation
	[4]
41.	
(b)	Outline the process of sequential access for serial and sequential files.
	[2]
5 Des	scribe the features of SISD and MIMD computer architectures.
SIS	D
MIN	/ID
	[4]

© UCLES 2023

BLANK PAGE

6 This diagram represents a logic circuit.

(a) Complete the truth table for the given logic circuit.

Α	В	С	D	Working space	Z
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

[3]

(b)	Simplify the given Boolean expression using Boolean algebra. Show your working.
	$Y = \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.C.\overline{D} + \overline{A}.B.\overline{C}.\overline{D} + \overline{A}.B.C.\overline{D}$
	[3]
7 (a)	A student buys a new computer.
	State one benefit to the student of a user interface and give an example.
	Benefit
	Example
	[2]
(b)	Two of the process states are the running state and the ready state.
	Identify one other process state.
	[1]
(c)	Outline conditions under which a process could change from the running state to the ready state.
	[2]

8 (a) A pseudocode algorithm finds a customer account record in a random file and outputs it. The records are stored using the user-defined data type TAccount.

DECLARE AccountNumber : INTEGER

TYPE TAccount

DECLARE LastName : STRING DECLARE FirstName : STRING DECLARE Address : STRING DECLARE ContactNumber: STRING ENDTYPE Complete the file handling pseudocode. The function Hash () takes the customer account number as a parameter, calculates and returns the hash value. DECLARE Customer : TAccount DECLARE Location : INTEGER DECLARE Accountfile : STRING ← "AccountRecords.dat" AccountFile OUTPUT "Please enter an account number" INPUT Customer.AccountNumber Location ← Hash(.....) SEEK, Location OUTPUT Customer // output customer record CLOSEFILE Accountfile [5] (b) Define the term exception handling. (c) State two possible causes of an exception.[2]

9	(a)	(i)	Write the infix expression for this Reverse Polish Notation (RPN) expression:
			5 2 - 5 4 + * 9 /
			[2]
		(ii)	Show how the contents of the following stack will change as the RPN expression in part (a)(i) is evaluated.
	(b)	Exp	[4]
			[3]

10 A stack is to be set up using the information in the table.

Identifier	Data type	Description
BasePointer	INTEGER	points to the bottom of the stack
TopPointer	INTEGER	points to the top of the stack
Stack	REAL	1D array to implement the stack

A constant, with identifier Capacity, limits the size of the stack to 25 items.

(a)	Write the pseudocode for the required declarations.
	[3]
(b)	Complete the pseudocode function Pop () to pop an item from Stack.
	// popping an item from the stack
	FUNCTION Pop()
	DECLARE Item : REAL
	Item ← 0
	BasePointer THEN
	Item ←
	TopPointer ←
	ELSE
	OUTPUT "The stack is empty - error"
	ENDIF
	ENDFUNCTION

(c)	Compare and contrast the queue and stack Abstract Data Types (ADT).	
		[2]

11 A declarative programming language is used to represent subjects that students can choose to study.

Students must choose two subjects.

```
01 subject (mathematics).
02 subject (physics).
03 subject (chemistry).
04 subject(computer science).
05 subject (geography).
06 subject(history).
07 subject(english).
08 subject (biology).
09 student(tomaz).
10 student(josephine).
11 student(elspeth).
12 student(nico).
13 student(teresa).
14 student(pietre).
15 choice1(tomaz, mathematics).
16 choice1(teresa, chemistry).
17 choice1 (pietre, mathematics).
18 choice1(nico, mathematics).
19 choice1(elspeth, chemistry).
20 choice2(tomaz, computer science).
21 choice2(nico, geography).
```

These clauses have the meanings:

Clause	Meaning
01	Mathematics is a subject.
09	Tomaz is a student.
15	Tomaz has chosen mathematics as his first choice.
20	Tomaz has chosen computer science as his second choice.

(a)	Anthony is a student who would like to study history and geography.
	Write additional clauses to represent this information.
	22
	23
	24
(b)	Using the variable x, the goal:
	choice1(X, chemistry)
	returns
	X = teresa, elspeth
	Write the result returned by the goal:
	<pre>choice1(X, mathematics)</pre>
	$X = \dots $ [1]
(c)	Students must choose two different subjects such that:
	N may choose S, if N is a student and S is a subject and N has not chosen S as the first choice.
	Write this as a rule.
	<pre>may_choose_subject(N, S)</pre>
	IF
	[4]

12	Artificial neural networks have played a significant role in the development of machine learning.	
	Explain what is meant by the term artificial neural network.	
	r	г и

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.