

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0903760850

COMPUTER SCIENCE

9618/13

Paper 1 Theory Fundamentals

October/November 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

BLANK PAGE

- 1 A digital audio message needs to be recorded.
 - (a) Tick (✓) one box in each row to identify the effect of each action on the accuracy of the recording.

Action	Accuracy increases	Accuracy decreases	Accuracy does not change
Change the sampling rate from 40 kHz to 60 kHz.			
Change the duration of the recording from 20 minutes to 40 minutes.			
Change the sampling resolution from 24 bits to 16 bits.			

	[2]									
(b)	The audio message is recorded with a sampling rate of 50 kHz and a sampling resolution of 16 bits.									
	The recording is 20 minutes in length.									
	Calculate the file size of the recording.									
	Give your answer in megabytes and show your working.									
	Working									
	Answer megabytes [2]									
(c)	A computer uses a buffer when playing the audio message.									
. ,										
	Explain the purpose of a buffer in a computer system using one other example.									

2 The relational database ASTRONOMY is used to store data about telescopes, the companies that own the telescopes and the photographs taken by the telescopes.

The database has these three tables:

COMPANY (TelephoneNumber, CompanyID, CompanyName)

PHOTOGRAPH (PhotoID, TelescopeID, DateTaken, TimeTaken, Elevation)

TELESCOPE (TelescopeID, CompanyID, SerialNumber)

(a) Complete the following table by writing the correct answer for each item.

Item	Answer
a suitable field for the primary key in COMPANY	
a candidate key in TELESCOPE	
the degree of relationship between TELESCOPE and PHOTOGRAPH	

(d)	Write the SQL script to add one field to the table PHOTOGRAPH to store the resolution of photograph, e.g. 1920×1068 .	the
		[2]
(e)	The photographs are stored as bitmap images.	
	Complete the statements about bitmap images by writing the missing words.	
	The of a bitmap image is the number	r of
	bits that are used to store each pixel.	
	Metadata about the image is stored in the	
	of the file.	[2]
(f)	Describe the purpose of a query processor in a DBMS.	[4]
		[2]

3 Draw **one** line from each Operating System (OS) management task to its most appropriate description.

OS Management task

hardware management

security management

memory management

process management

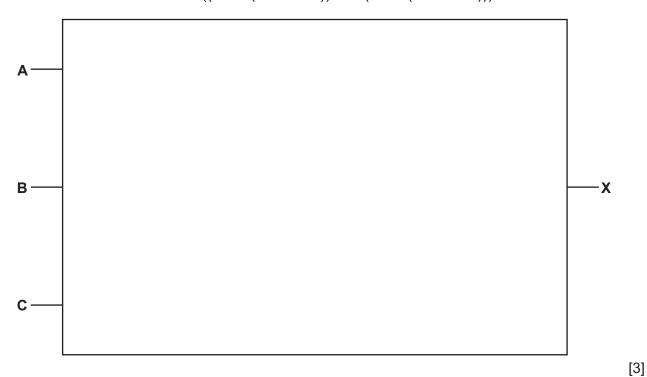
Description

dynamically allocates memory to processes

marks unallocated file storage for availability

installs programs for devices connected to external ports

validates user and process authenticity


allows processes to transfer data to and from each other

[4]

٠	(a)		ponents.							
		(i)	State the roles of the following registers.							
			Memory Address Register (MAR)							
			Memory Data Register (MDR)							
			[2							
		(ii)	State when interrupts are detected during the Fetch-Execute (F-E) cycle.							
	(b)	A computer system contains a system clock.								
		Des	scribe the purpose of the system clock.							
			[2							
	(c)		grading secondary storage to solid state typically improves the performance of compute tems.							
			ntify one other upgrade to the hardware and explain why it improves the performance of imputer system.							
		Upg	grade							
		Exp	lanation							

5 (a) Draw a logic circuit for the logic expression:

$$X = NOT ((NOT (A AND B)) OR (NOT (B AND C)))$$

(b) Complete the truth table for the logic expression:

Y = (NOT P AND Q) OR (Q AND NOT R)

Р	Q	R	Working space	Υ
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[2]

Question 6 begins on page 10.

6 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction		Funlanation					
Opcode	Operand	Explanation					
LDM	#n	Immediate addressing. Load the number n to ACC					
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC					
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC</address>					
LDR	#n	Immediate addressing. Load the number n to IX					
VOM	<register></register>	Moves the contents of the accumulator to the given register (IX)					
STO	<address></address>	Store contents of ACC at the given address					
ADD	<address></address>	Add the contents of the given address to the ACC					
ADD	#n	Add the denary number n to the ACC					
SUB	#n	Subtract the denary number n from the ACC					
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)					
JMP	<address></address>	Jump to the given address					
CMP	#n	Compare the contents of ACC with number n					
CMI	<address></address>	Indirect addressing. The address to be used is at the given address. Compare the contents of ACC with the contents of this second address					
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>					
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>					
OUT		Output to the screen the character whose ASCII value is stored in ACC					
END		Return control to the operating system					

<address> can be an absolute or a symbolic address

[#] denotes a denary number, e.g. #123

B denotes a binary number, e.g. B01001101

- (a) The current contents of main memory and selected values from the ASCII character set are given.
 - (i) Trace the program currently in memory using the trace table.

Address Instruction 75 LDR #0 76 LDD 100 77 CMP #2 78 JPE 91 79 LDX 110 80 SUB #32 81 CMP #65 82 JPN 86 83 LDM #1 84 ADD 101 85 STO 101 86 LDM #1 87 ADD 100 STO 100 88 89 INC IX JMP 76 90 91 LDD 101 92 ADD #48 93 OUT 94 END 1 100 101 0

ASCII value	Character
49	1
50	2
51	3
52	4
65	А
66	В
67	С
68	D

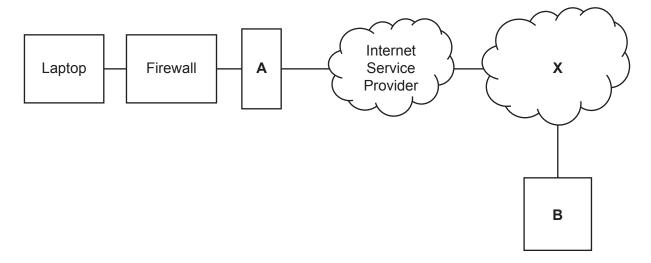
. . .

110111

112

97

98 97


Instruction	ACC	IV		Memory address				Output
address	ACC	IX	100	101	110	111	112	Output
			1	0	97	98	97	

(ii) Explain the purpose of **relative addressing** in an assembly language program.

		[2]							
(b)	The following to	able shows another part of the instruction set for the processor.							
Ins	truction	Explanation							
Opcode	Operand								
AND	#n	Bitwise AND operation of the contents of ACC with the operand							
AND	Bn	Bitwise AND operation of the contents of ACC with the binary number n							
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>							
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand							
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>							
OR	#n	Bitwise OR operation of the contents of ACC with the operand							
OR	Bn	Bitwise OR operation of the contents of ACC with the binary number n							
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>							
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right-hand end							
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left-hand end							
# denotes	a denary numbe	lute or a symbolic address er, e.g. #123 r, e.g. B01001101							
	(i) The currer	nt contents of the ACC are:							
	(
	Show the contents of the ACC after the execution of the following instruction.								
	AND B01001100								

	(11)	rne cu	irrent co	ntents	or the A	CC are:					7
			1	0	0	1	0	1	0	1	
		Show	the cont	tents of	the AC(C after t	he exec	ution of	the foll	owing ir	nstruction.
							0011				
	/:::\	Thora	urrant oc	ontents	of the A	CC ara:					[1]
((iii)	THE CL	ment co	ments	or the A	CC are.					1
			1	0	0	1	1	1	0	1	
		Show	the con	tents of	the AC	C after t	he exec	ution of	the foll	owing ir	nstruction.
						LSR	#2				
, ,	•	. ,									[1]
(c)				oup is da							
	Giv	e the na	ame of c	ne oth	er instru	ıction gı	oup.				

7 (a) The diagram shows the hardware and software used to retrieve files stored on the cloud.

Complete the following table by writing the answer for each row.

Answer

	laptop to connect to the internet	
	A type of cloud, X	
	An example of an application, B , that can run on the cloud	
		[3]
(b)	Give one advantage and two disadvant copper cables.	tages of transmitting data using satellites instead of
	Advantage 1	
	Disadvantage 1	
	Disadvantage 2	
		[3]

(i)	Give two	benefits of dividing a networ	k into subnetworks by subr	netting the LAN.
	1			
	2			
				[2
(ii)	A subnet	mask is used when subnettir	ng a LAN.	-
	Two devi	ces on the LAN are located ir	n different subnetworks.	
	The IP ac	ddresses and corresponding s	subnet masks are shown:	
		Device IP address	Subnet mask	
		10.10.12.1	255.0.0.0	
		192.168.12.4	255.255.255.0	
	Identify th			
	THE HELW	ork ID for the device with the	ii address 10.10.12.1	
	The best	ID for the device with the ID		
	The host	ID for the device with the IP a	address 192.168.12.4	
				[2

8	(a)	(i)	Explain why some programs are distributed under an open source licence.		
			[2]		
		(ii)	Explain how a programmer benefits from distributing a program under a commercial licence.		
			[2]		
	(b)		ommercial program for a vehicle repair garage includes an Artificial Intelligence (AI) dule that can diagnose faults and suggest repairs.		
		Das			
		Des	scribe one economic impact the AI module may have on the garage.		
			[2]		

9	(a)	(i)	Convert the unsigned bina	rv value into hexadecimal.
•	(ω)	1.1	Convert the analytica bina	ry valao irito rionaacoirriai.

10010011

		Answer	[1]
	(ii)	Convert the unsigned binary value into denary.	
		10010011	
		Answer	[1]
(b)	Stat	te two benefits of using Binary Coded Decimal (BCD) to represent values.	
	Ben	nefit 1	
	Ben	nefit 2	
			[2]

10	(a)	Exp	plain the importance of feedback in a control system.
			[3]
	(b)	(i)	Identify one sensor that could be used in a car alarm system.
			Justify your choice.
			Sensor
			Justification
			[2]
		(ii)	The car alarm is an example of an embedded system.
			Describe the characteristics of an embedded system.
			[3]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.