

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

8879855592

COMPUTER SCIENCE

9618/33

Paper 3 Advanced Theory

May/June 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 Data types can be defined using pseudocode.

The data type, LibraryRecord, is defined in pseudocode as:

TYE	DEC:	ibraryRecord LARE Title : STRING LARE Fiction : BOOLEAN LARE Author : STRING
		LARE NumberOfCopies : INTEGER
ENI	TYPI	
		le, LibraryBook, is declared in pseudocode as:
L	ŒCL	ARE LibraryBook : LibraryRecord
(a)	Writ	re pseudocode statements to assign:
	•	A Level Computer Science to Title of LibraryBook FALSE to Fiction of LibraryBook.
		[2]
(b)	The	type definition for LibraryRecord is changed.
	(i)	The value for NumberOfCopies must be between 1 and 10 inclusive.
		Write the updated line of $\ensuremath{\text{pseudocode}}$ from the type definition of $\ensuremath{\text{LibraryRecord}}$ to implement the change.
	(ii)	Every copy of every book is now uniquely identified by an accession number, AccessionNumber, as it is added to the library. Each library record will include one or more accession numbers. Each accession number is an integer.
		Write the extra line of pseudocode needed in the type definition of LibraryRecord.
		[2]

(c) A record is a user-defined composite data type.

Explain what is meant by a user-defined composite data type . Include an example of another user-defined composite data type in your answer.
[3]

2 A declarative language is used to represent the following facts about cats.

```
01 type(leopard, wild).
02 type(lion, wild).
03 type(cheetah, wild).
04 type(savannah, hybrid).
05 type(persian, domestic).
06
07 hair(leopard, medium).
08 hair(lion, short).
09 hair (cheetah, medium).
10 hair (savannah, medium).
11 hair (persian, long).
12
13 spots(leopard, yes).
14 spots(lion, no).
15 spots(cheetah, yes).
16 spots(savannah, yes).
17 spots(persian, no).
```

These clauses have the following meaning:

Clause	Meaning
01	A leopard is a type of wild cat.
08	A lion has short hair.
16	A savannah has spots.

(a)	Mor	re facts are to be included. A caracal is a wild cat with short hair.	
	Writ	te the additional clauses to record these facts.	
	18		
	19		
(b)	Usiı	ng the variable Cat, the goal:	[2]
		hair(Cat, medium)	
	retu	rns	
		Cat = leopard, cheetah, savannah	
	Writ	te the result returned by the goal:	
		hair(Cat, long)	
	Cat	: =	[1]
(c)	(i)	Write the goal, using the variable Pet, to find all the domestic cats.	
			[1]
	(ii)	Write the goal, using the variable WildSpotty, to find all the wild cats with spots.	
			[2]
			[2

Data can be sent over networks using either circuit switching or packet switching.
Describe both methods of data transmission. Include a different advantage and disadvantage for each method.
Circuit switching
Advantage
Disadvantage
Packet switching
Advantage
Disadvantage
[8]

	duced Instruction Set Computers (RISC) and Complex Instruction Set Computers (CISC) are types of processor.
(a)	Describe what is meant by RISC and CISC processors.
	RISC
	CISC
	[4]
(b)	Identify two differences between RISC and CISC processors.
	1
	2
	[2]

Part of a program's calculations uses the integer variables j, k, m, n and p.
j = 3 $k = 2$ $m = 10$ $n = (j + k)/(j - k)$ $p = m * (m - j * k)$
(a) Write the Reverse Polish Notation (RPN) for the expression:
(j + k)/(j - k)
[2]
(b) (i) Show the changing contents of the stack as the value for p is calculated from its RPN expression: m m j k * - *
[4]
(ii) Describe the main steps in the evaluation of this RPN expression using a stack.

(c	State two other uses of a stack.
	1
	2
Α	virtual machine is used to emulate a new computer system.
D	escribe two benefits and one limitation of using a virtual machine for this purpose.
В	enefit 1
В	enefit 2
••	
Li	mitation
••	

7 A program is to be written using Object-Oriented Programming (OOP) for a shop that sells knitting yarn. There are three types of yarn: acrylic, wool or mix.

The following data are stored for each type.

- Name
- Colour
- · Batch code
- Weight
- Number of balls of yarn in stock (can be edited)
- Type of yarn

The following statements apply to yarn.

- Acrylic can be soft or not soft.
- Wool can be lamb, merino or alpaca.
- Mix contains a percentage of acrylic.

Each type of yarn has a method that will display all the information about the yarn.

(a) Complete this class inheritance diagram to show the **properties**, **methods** and **inheritance**.

Yarn
Name: STRING
Colour: STRING
BatchCode: STRING
Weight: INTEGER
NumberBalls: INTEGER
Type: STRING
Constructor()
EditNumberBalls()
YarnInfo()

Acrylic
Constructor()

Wool
Constructor()

Mix				
Percentage:	INTEGER			
Constructor YarnInfo()	()			

(b)	Describe what is meant by the terms properties , methods and inheritance .
	Properties
	Methods
	Wethous
	Inheritance
	[6]

Am	nessa	age is to be sent securely. Software uses a key to encrypt the message before it is s	ent.
(a)	(i)	Give two reasons for using key cryptography.	
		1	
		2	
			[2
	(ii)	Give two methods of key cryptography that can be used.	
		1	
		2	[2
/L-\	\	and the area in a consumer and he area of the surface of the surfa	رک
(D)		en there is a secure exchange of key(s), the message is sent.	
	The	e use of quantum cryptography is being considered for the secure exchange.	
	(i)	State two possible benefits of using quantum cryptography.	
		1	
		2	
			[2]
	(ii)	State two possible drawbacks of using quantum cryptography.	
		1	
		2	
			[2]

BLANK PAGE

9 The table shows assembly language instructions for a processor that has one general purpose register, the Accumulator (ACC).

	Instruction		Explanation
Label	Opcode	Operand	
	LDM	#n	Load the number n to ACC
	LDD	<address></address>	Load the contents of the given address to ACC
	LDI	<address></address>	The address to be used is at the given address Load the contents of this second address to ACC
	ADD	<address></address>	Add the contents of the given address to the ACC
	STO	<address></address>	Store the contents of the ACC at the given address
<label>:</label>		<data></data>	Gives a symbolic address <label> to the memory location with the contents <data> <label> can be used in place of <address></address></label></data></label>
# denotes a denary number, e.g. #123			

(a) The address 500 contains the value 100 and the address 100 contains the value 20.

State the addressing mode and the contents of ACC after each instruction has been executed.		
Addressing mode		
Contents of ACC		
Addressing mode		
Contents of ACC		
Addressing mode		
Contents of ACC[3]		

- (b) Use only the given instruction set to write **assembly language** code to:
 - use the constant 20 which needs to be stored
 - add this constant to the value stored in the address contained in the variable Y
 - store the result in variable Z.

	Instruction		
Label	Opcode	Operand	

[7]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.