Cambridge International AS & A Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 0 3 9 2 4 1 0 2 6 3 **COMPUTER SCIENCE** 9618/13 Paper 1 Theory Fundamentals October/November 2021 1 hour 30 minutes You must answer on the question paper. No additional materials are needed. ### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use an HB pencil for any diagrams, graphs or rough working. - Calculators must not be used in this paper. ### **INFORMATION** - The total mark for this paper is 75. - The number of marks for each question or part question is shown in brackets []. - No marks will be awarded for using brand names of software packages or hardware. | | Binary value | | | | | 1 kibibyte | |------------|---------------------|-----------------|------------------|-------------------------|-------------|------------| | | 8 bits | | | | | | | | | | | | | 1 gigabyte | | | 8000 bits | | | | | 1 byte | | | 1000 kilobytes | | | | | | | | 1024 mobilitytos | | | | | 1 kilobyte | | | 1024 mebibytes | | | | | 1 gibibyte | | | 8192 bits | | | | | 1 megabyte | | | | | | | | 1 mebibyte | | | | | | | | | |) | (i) Perform the fol | owing binary ad | dition. Show | your worki | ng. | | |)) | (i) Perform the fol | | dition. Show | | ing. | | |)) | (i) Perform the fol | 1 | | 10 | ing. | | | o) | (i) Perform the fol | 1 | 010101 | 10 | ing. | | | | | 1 | 010101
001101 | 10
<u>11</u> | | S. | | | | + (| 010101
001101 | 10
11
ng two bina | ary integer | S. | 2 | Xar
(a) | | wants to maintain the integrity and security of data stored on her computer. | |------------|------|--| | | | | | | | [2 | | (b) | Xar | nthe uses both data validation and data verification when entering data on her computer. | | | (i) | Describe how data validation helps to protect the integrity of the data. Give an example in your answer. | | | | Description | | | | Example[2 | | | (ii) | Describe how data verification helps to protect the integrity of the data. Give an example in your answer. | | | | Description | | | | | | | | Example[2] | | (c) | Two | o malware threats are spyware and viruses. | | | | e two similarities and one difference between spyware and a virus. | | | Sim | nilarity 1 | | | Sim | nilarity 2 | | | Diff | erence | | | | [3] | 3 A logic circuit is shown: (a) Write the logic expression for the logic circuit. | C1 | | |----|--| **(b)** Complete the truth table for the given logic circuit. | Α | В | С | Working space | х | |---|---|---|---------------|---| | 0 | 0 | 0 | | | | 0 | 0 | 1 | | | | 0 | 1 | 0 | | | | 0 | 1 | 1 | | | | 1 | 0 | 0 | | | | 1 | 0 | 1 | | | | 1 | 1 | 0 | | | | 1 | 1 | 1 | | | [2] | (c) | Identify one logic gate not used in the given logic circuit. Draw the symbol for the logic gate and complete its truth table. | |-----|--| | | Logic gate: | Truth table: Symbol: | Α | В | Output | |---|---|--------| | 0 | 0 | | | 0 | 1 | | | 1 | 0 | | | 1 | 1 | | [3] | Fra | ncis | is starting his first job as a software developer for a multinational company. | |-----|------|---| | (a) | Fra | ncis has been advised to join a professional ethical body. | | | Des | scribe the benefits to Francis of joining a professional ethical body. | [3] | | (b) | | ncis is shown the software he will be working on. He is unfamiliar with the Integrated velopment Environment (IDE) he is required to use. | | | (i) | Describe the ways in which Francis can act ethically in this situation. | | | | | | | | | | | | | | | | [2] | | | (ii) | A typical IDE provides debugging tools to support the testing of a program. | | | | Identify three other tools or features found in a typical IDE to support the writing of the program. | | | | 1 | | | | 2 | | | | 3[3] | | (c) | has | ncis is part of a team writing a program. He finds an error in part of the program that already been tested. He decides not to tell anyone because he is worried about the sequences. | | | Exp | plain the reasons why Francis acted unethically in this situation. | | | | | | | | | | | | | | | | [2] | (d) Francis's team use language translators. | Complete the descriptions of language translators by writing the missing words. | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--| | are usually used when a high-level language program is | | | | | | | | | | | complete. They translate all the code at the same time and then run the program. | | | | | | | | | | | They produce files that can be run without the source code. | | | | | | | | | | | translate one line of a high-level language program at a time | | | | | | | | | | | and then run that line of code. They are most useful while developing the programs because | | | | | | | | | | | errors can be corrected and then the program continues from that line. | | | | | | | | | | | Assemblers are used to translate assembly code into | | | | | | | | | | [4] 5 Javier owns many shops that sell cars. He employs several managers who are each in charge of one or more shops. He uses the relational database CARS to store the data about his business. Part of the database is shown: SHOP(ShopID, ManagerID, Address, Town, TelephoneNumber) MANAGER(ManagerID, FirstName, LastName, DateOfBirth, Wage) CAR(RegistrationNumber, Make, Model, NumberOfMiles, ShopID) (a) Tick (\checkmark) one box in each row to identify whether each field is a primary key or a foreign key. | Table | Field name | Primary key | Foreign key | |---------|--------------------|-------------|-------------| | MANAGER | ManagerID | | | | SHOP | ManagerID | | | | CAR | RegistrationNumber | | | | CAR | ShopID | | | (b) Describe the ways in which access rights can be used to protect the data in Javier's database from unauthorised access. [2] | (c) | Javier | uses | Data | Definition | Language | (DDL) | and | Data | Manipulation | Language | (DML) | |-----|--------|---------|-------|------------|----------|-------|-----|------|--------------|----------|-------| | | statem | ents ir | his d | atabase. | | | | | | | | | (i) | Complete | the | following | DML | statements | to | return | the | number | of | cars | for | sale | in | each | |-----|----------|-----|-----------|-----|------------|----|--------|-----|--------|----|------|-----|------|----|------| | | shop. | | | | | | | | | | | | | | | | SELECT COUNT() | | |----------------|-----| | FROM | | | ShopID | [3] | (ii) Complete the DML statement to include the following car in the table ${\tt CAR.}$ | Field | Data | |--------------------|-----------| | RegistrationNumber | 123AA | | Make | Tiger | | Model | Lioness | | NumberOfMiles | 10500 | | ShopID | 12BSTREET | |
CAR | | |---|------| |
("123AA", "Tiger", "Lioness", 10500, "12BSTREET") | [2] | | | 14-1 | ## **BLANK PAGE** | • | 1-1 | There are 4 | بع مناب بالمال مناب المال مناب | | | £-4-1 | |---|-----|-----------------------------|--------------------------------|---------------------|------------------|----------------------| | O | (a) | There are two errors | in the following | register transfer r | notation for the | retch-execute cycle. | 1 MAR $$\leftarrow$$ [PC] 2 $$PC \leftarrow [PC] - 1$$ 3 MDR $$\leftarrow$$ [MAR] 4 CIR $$\leftarrow$$ [MDR] # Complete the following table by: - identifying the line number of each error - describing the error - writing the correct statement. | Line
number | Description of the error | Correct statement | |----------------|--------------------------|-------------------| [4] **(b)** The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX). | Instruction | | | | |-------------|-----------------------|--|--| | Opcode | Operand | | | | LDM | #n | Immediate addressing. Load the number n to ACC | | | LDD | <address></address> | Direct addressing. Load the contents of the location at the given address to ACC | | | STO | <address></address> | Store the contents of ACC at the given address | | | INC | <register></register> | Add 1 to the contents of the register (ACC or IX) | | | CMP | <address></address> | Compare the contents of ACC with the contents of <address></address> | | | JPN | <address></address> | Following a compare instruction, jump to <address> if the compare was False</address> | | | JMP | <address></address> | Jump to the given address | | | IN | | Key in a character and store its ASCII value in ACC | | | OUT | | Output to the screen the character whose ASCII value is stored in ACC | | | END | | Return control to the operating system | | | XOR | #n | Bitwise XOR operation of the contents of ACC with the operand | | | XOR | <address></address> | Bitwise XOR operation of the contents of ACC with the contents of <address></address> | | | AND | #n | Bitwise AND operation of the contents of ACC with the operand | | | AND | <address></address> | Bitwise AND operation of the contents of ACC with the contents of <address></address> | | | OR | #n | Bitwise OR operation of the contents of ACC with the operand | | | OR | <address></address> | Bitwise OR operation of the contents of ACC with the contents of <address></address> | | | LSL | #n | Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end | | | LSR | #n | Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end | | The current contents of main memory are shown: | Address | Data | |---------|----------| | 100 | 00001111 | | 101 | 11110000 | | 102 | 01010101 | | 103 | 11111111 | | 104 | 00000000 | B denotes a binary number, e.g. B01001101 Each row of the following table shows the current contents of ACC in binary and the instruction that will be performed on those contents. Complete the table by writing the new contents of the ACC after the execution of each instruction. | Current contents of the ACC | Instruction | New contents of the ACC | |-----------------------------|-------------|-------------------------| | 11111111 | OR 101 | | | 0000000 | XOR #15 | | | 10101010 | LSR #2 | | | 01010101 | AND 104 | | Bobby is recording a sound file for his school project. 7 | (a) | He | repeats the recording of the sound several times, with a different sample rate each time. | |-----|--------------|--| | | (i) | Describe the reasons why the sound is closer to the original when a higher sample rate is used. | | | | | | | | | | | | | | | (ii) | Describe the reasons why the sound file size increases when a higher sample rate is used. | | | | | | | | | | | | | | | | [2] | | (b) | | bby wants to email the sound file to his school email address. He compresses the file ore sending the email. | | | (i) | Explain the reasons why Bobby compresses the sound file. | | | | | | | | | | | | | | | <i>(</i> 11) | [2] | | | (ii) | Bobby uses lossless compression. | | | | Describe how lossless compression can compress the sound file. | | | | | | | | | | | | [2] | | Asc | chool is setting up a network within one of its buildings. | |-----|--| | (a) | State whether the network will be a LAN (local area network) or a WAN (wide area network) Justify your choice. | | | | | | | | | | | | | | | [3] | | | υυυυυυυ | | (b) | One classroom in the building has 30 computers. The computers need to be connected to the network. Each computer has a network interface card (NIC). | | | Identify two possible devices that can be used to physically connect the 30 computers to the rest of the network. | | | 1 | | | 2[2] | | (c) | The school has several laptops. Each laptop has a Wireless Network Interface Card (WNIC). | | | Describe the functions of a Wireless Network Interface Card. | [4] | ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.