
 

                                                              
  

This document consists of 20 printed pages. 
 

© UCLES 2021 
 

[Turn over
 

Cambridge International AS & A Level 
 

COMPUTER SCIENCE 9608/41 
Paper 4 Further Problem-solving and Programming Skills May/June 2021 

MARK SCHEME 

Maximum Mark: 75 
 

 

Published 

 
 
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the 
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the 
details of the discussions that took place at an Examiners’ meeting before marking began, which would have 
considered the acceptability of alternative answers. 
 
Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for 
Teachers. 
 
Cambridge International will not enter into discussions about these mark schemes. 
 
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge 
IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components. 
 
 
 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 2 of 20  
 

Generic Marking Principles 
 

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the 
specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these 
marking principles. 
 

GENERIC MARKING PRINCIPLE 1: 
 
Marks must be awarded in line with: 
 
• the specific content of the mark scheme or the generic level descriptors for the question 
• the specific skills defined in the mark scheme or in the generic level descriptors for the question 
• the standard of response required by a candidate as exemplified by the standardisation scripts. 

GENERIC MARKING PRINCIPLE 2: 
 
Marks awarded are always whole marks (not half marks, or other fractions). 

GENERIC MARKING PRINCIPLE 3: 
 
Marks must be awarded positively: 
 
• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the 

scope of the syllabus and mark scheme, referring to your Team Leader as appropriate 
• marks are awarded when candidates clearly demonstrate what they know and can do 
• marks are not deducted for errors 
• marks are not deducted for omissions 
• answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the 

question as indicated by the mark scheme. The meaning, however, should be unambiguous. 

GENERIC MARKING PRINCIPLE 4: 
 
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level 
descriptors. 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 3 of 20  
 

GENERIC MARKING PRINCIPLE 5: 
 
Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may 
be limited according to the quality of the candidate responses seen). 

GENERIC MARKING PRINCIPLE 6: 
 
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or 
grade descriptors in mind. 

 
 
 
  



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 4 of 20  
 

Question Answer Marks 

1(a) 1 mark for each completed space - accept any equivalent statements   
 

 

5 

Code re-entered 

Total the 
money 

inserted 

Check 
code 
valid 

Insert Coin 

Return 
money 

Dispense 
Item 

Enter code 

Insufficient 
money 

cancel 

cancel 

Sufficient money 
Check 
total 

inserted 

Valid code 

Cancel 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 5 of 20  
 

Question Answer Marks 

1(b)(i) 1 mark per bullet point to max 4 
• Class declaration and end  
• Private Items declared as array with 4 elements of type foodItem 
• Private moneyIn declared as real and initialised to 0 in constructor 
• Constructor heading taking 4 parameters and end … 
• … assigning parameters to all 4 array values  
 
Example code: 
 
VB.NET 
Public Class vendingMachine 
  Private items(3) As foodItem 
  Private moneyIn As Single 
 
  Public Sub New(item1, item2, item3, item4) 
    items(0) = item1 
    items(1) = item2 
    items(2) = item3 
    items(3) = item4 
    moneyIn = 0 
  End Sub 
End Class 
 
Python 
class vendingMachine: 
  #private items(4) of type foodItem 
  #private moneyIn of type Real 
  def __init__(self, item1, item2, item3, item4): 
    self.__items = [] 
    self.__items.append(item1) 
    self.__items.append(item2) 
    self.__items.append(item3) 
    self.__items.append(item4) 
    self.__moneyIn = 0 

4 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 6 of 20  
 

Question Answer Marks 

1(b)(i) Pascal 
type vendingMachine = class 
  private 
    items : array[0..3] of foodItem; 
    moneyIn : Real; 
  public 
    constructor init(); 
  end; 
  Constructor vendingMachine.init(item1, item2, item3, item4); 
  begin 
    items[0] := item1; 
    items[1] := item2; 
    items[2] := item3; 
    items[3] := item4; 
    moneyIn := 0; 
  end; 

 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 7 of 20  
 

Question Answer Marks 

1(b)(ii) 1 mark per bullet point to max 5 
• Function header taking parameter (and close where appropriate)  
• Finding position in array // finding if not in array … 
• … if not found, return −1  
• Checking cost against moneyIn … 
• … if not enough money, return –2  
• … if found and enough money, return position  
• Using Items, getCost() and getCode() throughout 
 
Example code: 
 
VB.NET 
Public Function checkValid(code) 
  For x = 0 To 3 
    If items(x).getCode = code Then 
      If items(x).getCost <= moneyIn Then 
        Return x 
      Else 
        Return -2 
        End If 
    End If 
  Next 
  Return -1 
End Function 
 
Python 
def checkValidCode(code): 
  for x in range (0,4): 
    if items[x].getCode == code: 
      if items[x].getCost <= moneyIn: 
         return x 
      else: 
         return -2 
  return -1 

5 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 8 of 20  
 

Question Answer Marks 

1(b)(ii) Pascal 
Function checkValidCode(code):Integer 
begin 
  for x := 0 to 3 do 
    if items[x].getCode = code then 
      if items[x].getCost <= moneyIn then 
         return x 
      else 
         return -2 
  return -1 
end; 

 

1(b)(iii) 1 mark per bullet point to max 2 
• Declaration of new instance of vendingMachine with identifier machineOne … 
• …passing all four objects as parameters using constructor  
 
Example code: 
VB.NET 
Dim machineOne as vendingMachine 
machineOne = new vendingMachine(chocolate, sweets, sandwich, apple) 
 
Python 
machineOne = vendingMachine(chocolate, sweets, sandwich, apple) 
 
Pascal 
machineOne := vendingMachine.Create(chocolate, sweets, sandwich, apple); 

2 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 9 of 20  
 

Question Answer Marks 

2(a) 1 mark per bullet point 
• Definition with identifier customer … 
• … customerID with data type integer 
• … remaining 3 fields with data type string 
e.g. 
TYPE customer 
  DECLARE customerID AS INTEGER 
  DECLARE firstName AS STRING 
  DECLARE lastName AS STRING 
  DECLARE telephoneNumber AS STRING 
ENDTYPE 

3 

2(b)(i) 1 mark for both hash values 
 

Customer ID Hash value 

40125 127 

10131 133 
 

1 

2(b)(ii) 1 mark per bullet point to max 3 
• Check each location serially until finds a free record // linear search … 
• … or if reaches end of file continue checking from first record 
• … track how many records checked and if all checked report file full  

 
• Use of an overflow table … 
• … that stores records with collisions 
• … serially/in order 

 
• Implement a linked list for each hash location … 
• … store record in first free node in linked list 
• … update that location's last node linked list pointer 

3 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 10 of 20  
 

Question Answer Marks 

2(b)(iii) 1 mark per bullet point to max 5 
• Function declaration taking Customer ID as parameter returning type customer 
• Opening "customerRecords.data" for random 
• Calling getRecordLocation() with parameter …  
• … storing return value  
• Finding location in file using hash value …  
• … accessing record from location  
• … return value 
• Closing file in appropriate place under all conditions 
 
Example code: 
 
FUNCTION getCustomer(customerID) RETURNS customer 
  DECLARE customerRec : customer 
  filename = "customerRecords.dat" 
  OPENFILE filename FOR RANDOM 
  SEEK filename, getRecordLocation(customerID) 
  GETRECORD filename, customerRec 
  CLOSEFILE filename 
  RETURN customerRec 
ENDFUNCTION 

5 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 11 of 20  
 

Question Answer Marks 

3(a) 1 mark for each completed part 
 

 

5 

3(b) 1 mark per bullet point to max 2 
• A C and E can be split between different people 
• B D F and I can be split between different people 
• G and J can be split between different people 

2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 K 
3 13 

C 
2 

E 
1 

D 
2 

F 
1 

G 
2 

H 
2 

I 
2 

J 
2 

L 
2 

A 
1 

B 
1 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 12 of 20  
 

Question Answer Marks 

3(c) 1 mark per bullet point to max 3 
• Do not have to write functions/code themselves  
• … therefore, saves time when writing the program 
• Thoroughly tested routines  
• … improve robustness of your program 
• You do not need to test/debug the routines  
• … saves time testing 
• Can make use of other people's expertise 
• … can use algorithms that you do not have the skills to write yourself 

3 

3(d) 1 mark per feature to max 2 
e.g. 
• colour coding / pretty printing 
• auto-indent 
• auto-complete 
• collapse/expand modules 
• context sensitive prompts 
• breakpoints 
• dynamic syntax highlighting 

2 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 13 of 20  
 

Question Answer Marks 

4(a) 1 mark for adding D and H below G  
1 mark for adding J and P below L  

 

2 

M

C

A G

D H

R

L 

J P

W



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 14 of 20  
 

Question Answer Marks 

4(b)(i) 1 mark for rootPointer pointing to 0 
1 mark for freePointer pointing to 11  
1 mark for left and right correctly linked nodes 0 TO 5 
1 mark for -1 added as pointer for all remaining null pointers 
 
rootPointer 0  Index leftPointer data rightPointer 

freePointer 11  0 1 M 5 

   1 2 C 4 

   2 -1 A -1 

   3 7 L 9 

   4 8 G 10 

   5 3 R 6 

   6 -1 W -1 

   7 -1 J -1 

   8 -1 D -1 

   9 -1 P -1 

   10 -1 H -1 

   11 (-1)  (-1) 
 

4 

4(b)(ii) 1 mark per bullet point 
• Defining 1D array with 100 elements 
• of type node, with identifier binaryTree 
Example: 
DECLARE binaryTree : ARRAY[0:99] OF node 

2 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 15 of 20  
 

Question Answer Marks 

4(b)(iii) 1 mark per bullet point 
• Outputting the data in the root node 
• Check if left Pointer is/is not –1 … 
• … recursive call left with left pointer as parameter, if not –1   
• Check if right Pointer is/is not –1 … 
• … recursive call right with right pointer as parameter, if not −1  
• Output, left, right in correct order with  
 
Example code: 
 
PROCEDURE preOrder(rootpointer) 
 
  OUTPUT(binaryTree[rootPointer].Data) 
   
  IF binaryTree[rootPointer].leftPointer <> -1  
    THEN 
      preOrder(binaryTree[rootPointer].LeftPointer) 
  ENDIF 
 
  IF binaryTree[rootPointer].rightPointer <> -1 
    THEN 
      preOrder(binaryTree[rootPointer].rightPointer) 
  ENDIF 
 
ENDPROCEDURE 

6 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 16 of 20  
 

Question Answer Marks 

5(a) 1 mark for both returns 
1 mark for each completed statement 
 
FUNCTION binarySearch(BYVALUE upper,lower, searchValue : INTEGER) RETURNS  
                                                                    INTEGER 
  DECLARE flag : INTEGER  
  DECLARE mid : INTEGER  
   
  flag ← -2 
  mid ← 0 
 
  WHILE flag <> -1 
    mid ← lower + ((upper - lower) DIV 2) 
    IF upper < lower 
      THEN 
        RETURN -1 
      ELSE 
        IF dataArray(mid) < searchValue  
          THEN 
            lower ← mid + 1 
          ELSE 
            IF dataArray(mid) > searchValue 
              THEN 
                upper ← mid - 1 
              ELSE 
                RETURN mid 
            ENDIF 
        ENDIF 
     ENDIF 
  ENDWHILE 
ENDFUNCTION 

4 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 17 of 20  
 

Question Answer Marks 

5(b) 1 mark per bullet point 
• If search value is greater, then recursive call… 
• …with the mid + 1 sent in place as lower (and other correct parameters) 
• If search value is less than recursive call… 
• …with the mid − 1 sent in place as upper (and other correct parameters) 
• Return −1 when not found AND Return mid when found  
 
Example code: 
 
VB.NET 
Function recursiveBinarySearch(ByVal lowerbound, ByVal upperbound, ByVal searchValue) 
  Dim mid As Integer = 0 
  mid = lowerbound + ((upperbound - lowerbound) \ 2) 
 
  If upperbound < lowerbound Then 
    Return -1 
  Else 
 
    If dataArray(mid) < searchValue Then 
      Return recursivebinarySearch(mid + 1, upperbound, searchValue) 
    ElseIf dataArray(mid) > searchValue Then 
      Return recursivebinarySearch(lowerbound, mid - 1, searchValue) 
    Else 
       Return mid 
    End If 
  End If 
 
End Function 

5 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 18 of 20  
 

Question Answer Marks 

5(b) Python 
def recursiveBinarySearch(lowerbound, upperbound, searchValue): 
  mid = lowerbound + int((upperbound - lowerbound)/2) 
  if upperbound < lowerbound: 
    return -1 
  else: 
    if dataArray[mid] < searchValue: 
      return recursiveBinarySearch(mid + 1, upperbound, searchValue) 
    elif dataArray[mid] > searchValue: 
        return recursiveBinarySearch(lowerbound, mid - 1, searchValue) 
    else: 
         return mid 
 
Pascal 
Function recursiveBinarySearch(lowerbound:Integer, upperbound:Integer, searchValue: 
Integer):Integer; 
begin 
  mid = lowerbound + ((upperbound - lowerbound) div 2); 
  if upperbound < lowerbound then 
    return -1; 
  else 
    if dataArray(mid) < searchValue then 
      return recursiveBinarySearch(mid + 1, upperbound, searchValue); 
    else if dataArray(mid) > searchValue then 
        return recursiveBinarySearch(lowerbound, mid  - 1, searchValue); 
end; 

 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 19 of 20  
 

Question Answer Marks 

6 Instruction Marks 
Label Op Code Operand 
 LDR #0  

start: LDD count 1 mark for start 
1 mark for LDD count 
1 mark for CMP #5   CMP #5 

 JPE endP  
 LDX word  
 AND Mask1 1 mark  
 CMP #0  
 JPE output  
 LDX word  
 AND Mask2 1 mark  

output: OUT   
 LDD count 

1 mark  INC ACC 

 STO count 

 INC IX  
 JMP start  

endP: end   
word: B01001000 

 
 B01101111 

 B01110101 

 B01110011 

 B01100101 

mask1: B00100000  
mask2: B11011111  
count: 0  

 

6 



9608/41 Cambridge International AS & A Level – Mark Scheme 
PUBLISHED 

May/June 2021 
 

© UCLES 2021 Page 20 of 20  
 

Question Answer Marks 

7(a) 1 mark per bullet point 
• procedure header taking array and pointer as parameters … 
• … by reference 
• Initialising all 1000 array elements to −1 and pointer to −1  
 
Example: 
 
PROCEDURE setUpStack(ByRef stackArray, ByRef topOfStack : INTEGER) 
  FOR x = 0 to 999 
    stackArray[x] ← -1 
  NEXT x 
  topOfStack ← -1 
ENDPROCEDURE 

3 

7(b) 1 mark per bullet point 
• Function header (and end taking array and pointer by reference) and checking stack empty … 
• … if empty, return −1 
• … if not empty, return topOfStack data item from stack and decrement pointer  
 
FUNCTION pop(ByRef stackArray, ByRef topOfStack: INTEGER) RETURNS INTEGER 
  IF topOfStack < 0  
    THEN 
      RETURN -1 
    ELSE 
      dataToReturn ← stackArray[topOfStack] 
      topOfStack ← topOfStack - 1 
      RETURN dataToReturn 
  ENDIF 
ENDFUNCTION 

3 

 


