

This document consists of 17 printed pages.

© UCLES 2021

[Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9608/21
Paper 2 Fundamental Problem-solving and Programming Skills May/June 2021

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge
IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 2 of 17

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level descriptors
for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question
• the specific skills defined in the mark scheme or in the generic level descriptors for the question
• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit

is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do
• marks are not deducted for errors
• marks are not deducted for omissions
• answers should only be judged on the quality of spelling, punctuation and grammar when these

features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 3 of 17

Question Answer Marks

1(a)(i) One mark for each part statement:

• Each character is assigned...
• ...a unique value
• …using 7 bits

Max 2 marks

2

1(a)(ii) One mark for two correct, 2 marks for all correct

Memory location ASCII character value

100 70

101 65

102 68

103 69

104 68

2

1(b)(i) One mark for both answers correct.
Exact terms only.

• Lower bound
• Upper bound

1

1(b)(ii) index / subscript 1

1(c) One mark for each error

Statement Error

Code ← LEFT("Cat", 4) Only 3 characters in string

Status ← MID("Aardvark", 0, 5) Second parameter should start
from 1

Size ← LENGTH("Password) Missing closing quote /
Opening quote should be
removed

Stock[n] ← Stock[n+1] NO ERROR / n may not be
integer value / n out of bound

Result ← 3 OR 4 Not Boolean types

5

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 4 of 17

Question Answer Marks

2 Mark as follows:

First mark for START, Initialisation of Index and END

Then one mark per area outlined, in correct place.

At least one decision box label (YES / NO) must be present.

5

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 5 of 17

Question Answer Marks

2(b) One mark per point.

Algorithm should mention:

1 Initialise variable to hold Max value
2 Loop through 26 elements of array
3 Test if element > Max ….and if so set new Max value
4 Method of checking for duplicates
5 Output a messge giving alphabetic char with largest count value - needs use of

CHR()
6 Output a suitable message if largets count value is shared

6

Question Answer Marks

3(a)

1 mark for each of:
1 Iteration arrow
2 Selection diamond
3 Both sets of parameters from Module_X
4 Parameter ByReferene to Module_YA
5 Parameter (ByValue) and return Boolean from Module_YB

5

3(b)(i) One mark for each statement:
• it is a function
• because it returns a value

2

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 6 of 17

Question Answer Marks

3(b)(ii) PROCEDURE Module ZB (BYVALUE ParX : REAL, BYREF ParZ : STRING)

One mark for:
• Procedure declaration
• ParX : REAL and ParZ : STRING
• ByRef for ParZ

Condone missing BYVALUE for ParX

3

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 7 of 17

Question Answer Marks

4(a) 'Pseudocode' solution included here for development and clarification of mark scheme.
Programming language solutions appear in the Appendix.

PROCEDURE ScanArray(SearchString STRING)

 DECLARE Index, Total : INTEGER
 DECLARE Error : BOOLEAN

 Index ← 1
 Total ← 0
 Error ← FALSE

 WHILE Index <= 1000 AND Error <> TRUE
 IF LENGTH(ThisArray[Index]) > 5
 THEN
 IF LEFT(ThisArray[Index], 4) = SearchString
 THEN
 Total ← Total + LENGTH(ThisArray[Index]) - 5
 ENDIF
 Index ← Index + 1
 ELSE
 Error ← TRUE
 ENDIF
 ENDWHILE

 IF Index > 1
 THEN
 ArrayResult ← INT(Total / (Index - 1))
 ENDIF

ENDPROCEDURE

Mark as follows:
1 Procedure header including parameter and end (where required)
2 Local variable declarations and initialisation of Index, Total and Error but no

local declaration of ArrayResult
3 WHILE / ENDWHILE loop
4 Nested IF statement comparing first four character of array element with

SearchString
5 Summation of Total using appropriate LENGTH function and subtracting 5
6 Assignment to ArrayResult using appropriate INT function AND check for

division by zero

6

4(b) One mark for each:

• The IDE displays hints / choice of keywords / available identifiers
• (Appropriate to) the current cursor position / insertion point

2

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 8 of 17

Question Answer Marks

4(c)(i) One mark for Name, max 2 for Tasks (one per underlined term):

Name: Design
Tasks: To define the data structures and algorithms (of the solution)

ALTERNATIVE

Name: Analysis
Tasks: Feasibility study // Problem definition / investigation // Requirement spec

3

4(c)(ii) Coding / Implementation / Programming 1

Question Answer Marks

5(a)(i) PROCEDURE GuessNum()
 DECLARE Count: INTEGER
 DECLARE RndNumber : INTEGER
 DECLARE MyGuess : INTEGER

 RndNumber ← 1 + INT(RAND(20))
 Count ← 1

 REPEAT
 OUTPUT "Input your guess"
 INPUT MyGuess
 IF MyGuess <> RndNumber
 THEN
 Count ← Count + 1
 OUTPUT "Incorrect – try again"
 ENDIF
 UNTIL MyGuess = RndNumber

 OUTPUT "You took ", Count, " guesses."

ENDPROCEDURE

1 mark for each of the following:

1 Use of RAND()to generate an integer between 1 and 20
2 Conditional loop until random number is guessed
3 Prompt and input a guess …in a loop
4 Comparison and increment Count and 'Try again' output message…in a loop
5 Final output message…not in a loop

5

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 9 of 17

Question Answer Marks

5(a)(ii) One mark per point.

Check for:

• Integer / number out of range <1 OR > 20
• Real number entered
• Non-numeric value entered

Max 2 marks

2

5(b)(i) • Stub testing 1

5(b)(ii) One mark for each:

• A simplified version of Status()/ a dummy function is written
• that returns a typical / expected value.

2

5(b)(iii) A compiler is used to translate / convert the source code / program / high-level
language code into object code / machine code / an executable file

1

Question Answer Marks

6(a) 'Pseudocode' solution included here for development and clarification of the mark
scheme.
Programming language example solutions appear in the Appendix.

FUNCTION Check(Index : INTEGER) RETURNS BOOLEAN

 IF LENGTH(StockID[Index]) <> 8 OR __
 Description[Index]) = "" OR __
 Quantity[Index] < 0
 THEN
 RETURN FALSE
 ELSE
 RETURN TRUE
 ENDIF

ENDFUNCTION

One mark for each of the following:

1 Function heading and ending (where appropriate)
2 Three comparisons...
3 ... connected by logical OR // AND / correct nested IF
4 RETURN value in both cases

4

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 10 of 17

Question Answer Marks

6(b) FUNCTION Backup() RETURNS BOOLEAN

 DECLARE Index : INTEGER
 DECLARE FileName, FileLine : STRING
 DECLARE AllOK : BOOLEAN

 CONSTANT ASTERISK = '*'
 AllOK ← TRUE

 FileName ← GetValidFileName()
 OPENFILE Filename FOR WRITE
 OPENFILE "ERRORLOG.TXT" FOR WRITE

 FOR Index ← 1 TO 10000
 IF StockID[Index]<> “”
 THEN
 FileLine ← StockID[Index] & ASTERISK
 FileLine ← FileLine & Description[Index] & ASTERISK
 FileLine ← FileLine & NUM_TO_STRING(Quantity[Index]) &
 ASTERISK
 FileLine ← FileLine & NUM_TO_STRING(Cost[Index])
 WRITEFILE FileName, FileLine

 //now check for sensible data
 IF Check(Index) <> TRUE
 THEN
 WRITEFILE, "ERRORLOG.TXT", FileLine
 AllOK ← FALSE
 ENDIF
 ENDIF
 ENDFOR

 CLOSEFILE FileName
 CLOSEFILE "ERRORLOG.TXT"
 RETURN AllOK
ENDFUNCTION

1 mark for each of the following:

1 Declare local variable for backup filename and index
2 Call to function GetValidFileName()
3 OPEN and CLOSE both files
4 Loop all 10 000 elements
5 Form FileLine using at least one correct array index expression and asterisk
6 Use of NUM_TO_STRING() to convert at least one of QUANTITY or COST
7 Write line to backup file
8 Call Check() to determine whether values are valid and if not, write to

ERRORLOG.TXT
9 Return AllOK
Max 8 marks from possible 10 mark points

8

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 11 of 17

Question Answer Marks

6(c) 'Pseudocode' solution included here for development and clarification of mark scheme.
Programming language example solutions appear in the Appendix.

PROCEDURE Unpack(Index : INTEGER, FileLine : STRING)

 DECLARE Pointer : INTEGER
 DECLARE NextChar : CHAR
 DECLARE TempString : STRING
 CONSTANT ASTERISK = '*'

 StockID[Index] ← LEFT(FileLine, 8) // the only fixed length
 field

 Pointer ← 10 // Point to start of Description (skip the '*')
 NextChar ← MID(FileLine, Pointer, 1)
 TempString ← ""
 WHILE NextChar <> ASTERISK
 TempString ← TempString & NextChar
 Pointer ← Pointer + 1
 NextChar ← MID(FileLine, Pointer, 1)
 ENDWHILE

 Description[Index] ← TempString
 Pointer ← Pointer + 1
 NextChar ← MID(FileLine, Pointer, 1)

 TempString ← ""
 WHILE NextChar <> ASTERISK
 TempString ← TempString & NextChar
 Pointer ← Pointer + 1
 NextChar ← MID(FileLine, Pointer, 1)
 ENDWHILE

 Quantity[Index] ← STRING_TO_NUM(TempString)
 TempString ← RIGHT(FileLine, LENGTH(FileLine) – Pointer)
 Cost[Index] ← STRING_TO_NUM(TempString)

ENDFUNCTION

1 mark for each of the following:

1 Procedure heading with parameters
2 Extract first 8 chars of FileLine
3 Assign to StockID
4 Search for asterisk for place separator
5 Extract Description string and assign to Description array
6 Extract Quantity string, and assign to Quantity array...
7 Extract Cost string and assign to Cost array
8 Type conversion for Cost and Quantity

8

*** End of Mark Scheme – example program code solutions follow ***

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 12 of 17

Program Code Example Solutions

Q4 (a): Visual Basic

Sub ScanArray(SearchString As String)

 Dim Index, Total As Integer
 Dim Error As Boolean

 Index = 1
 Total = 0
 Error = FALSE

 While Index <= 1000 And Error <> TRUE
 If Len(ThisArray(Index)) > 5 Then
 If Left(ThisArray(Index), 4) = SearchString Then
 Total = Total + Len(ThisArray(Index)) - 5
 End If
 Index = Index + 1
 Else
 Error = TRUE
 End If
 End While

 If Index > 1 Then
 ArrayResult = Int(Total / (Index - 1))
 End If

End Sub

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 13 of 17

Q4 (a): Pascal

procedure ScanArray(SearchString : string);

var
 Index, Total : integer;
 Error : boolean;

begin
 Index := 1;
 Total := 0;
 Error := FALSE;

 while Index <= 1000 And Error <> TRUE do
 begin
 if Length(ThisArray[Index]) > 5 then
 begin
 if LeftStr(ThisArray[Index], 4) = SearchString then
 Total := Total + Length(ThisArray[Index]) – 5;

 Index := Index + 1;
 else
 Error := TRUE;
 end;
 end;

 if Index > 1 then
 ArrayResult := int(Total / (Index - 1));

end;

Q4(a): Python

def ScanArray(SearchString):

 ## Index, Total As Integer
 ## Error As Boolean

 Index = 1
 Total = 0
 Error = FALSE

 while Index <= 1000 and Error <> TRUE:
 if len(ThisArray[Index]) > 5:
 ThisElement = ThisArray[Index]
 if ThisElement[:4] == SearchString:
 Total = Total + len(ThisArray[Index]) - 5
 Index = Index + 1
 else:
 Error = TRUE

 if Index > 1:
 ArrayResult = int(Total / (Index - 1))

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 14 of 17

Q6 (a): Visual Basic

Function Check(Index As Integer) As Boolean

 If Len(StockID(Index)) <> 8 Or _
 Description(Index)) = "" Or _
 Quantity(Index) < 0 Then
 Return FALSE
 Else
 Return TRUE
 End If

End Function

Q6(a): Pascal

function Check(Index : Integer) : boolean;

begin

 if Length(StockID[Index]) <> 8 Or
 Description[Index]) = "" Or
 Quantity[Index] < 0 then
 Check := FALSE // result := FALSE
 else
 Check := TRUE // result := TRUE
 end;

end

Q6(a): Python

def Check(Index):

 if len(StockID[Index]) <> 8 or \
 Description[Index]) == "" or \
 Quantity[Index] < 0:
 return FALSE
 else:
 return TRUE

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 15 of 17

Q6(c): Visual Basic

Sub Unpack(Index As Integer, FileLine As String)

 Dim Pointer As Integer
 Dim NextChar As Char
 Dim TempString As String
 Const ASTERISK = '*'

 StockID(Index) = LEFT(FileLine, 8)

 Pointer = 10 'point to start of Description (skip the '*')
 NextChar = Mid(FileLine, Pointer, 1)
 TempString = ""
 While NextChar <> ASTERISK
 TempString = TempString & NextChar
 Pointer = Pointer + 1
 NextChar = Mid(FileLine, Pointer, 1)
 End While

 Description(Index) = TempString
 Pointer = Pointer + 1
 NextChar = Mid(FileLine, Pointer, 1)

 TempString = ""
 While NextChar <> ASTERISK
 TempString = TempString & NextChar
 Pointer = Pointer + 1
 NextChar = Mid(FileLine, Pointer, 1)
 End While

 Quantity(Index) = CInt(TempString)
 TempString = Right(FileLine, Len(FileLine) – Pointer)
 Cost(Index) = CDec(TempString)

End Sub

Q6(c): Pascal

procedure Unpack(Index : Integer, FileLine : String);

var
 Pointer : integer;
 NextChar : char;
 TempString : string;

const
 ASTERISK = '*';

begin
 StockID[Index] := LeftStr(FileLine, 8);

 Pointer := 10; //point to start of Description (skip the '*')
 NextChar := MidStr(FileLine, Pointer, 1);
 TempString := "";
 while NextChar <> ASTERISK do

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 16 of 17

 begin
 TempString := TempString & NextChar;
 Pointer := Pointer + 1;
 NextChar := MidStr(FileLine, Pointer, 1);
 end;

 Description[Index] := TempString;
 Pointer := Pointer + 1;
 NextChar := MidStr(FileLine, Pointer, 1);

 TempString := "";
 while NextChar <> ASTERISK do
 begin
 TempString := TempString & NextChar;
 Pointer := Pointer + 1;
 NextChar := MidStr(FileLine, Pointer, 1);
 end;

 Quantity[Index] := StrToInt(TempString);
 TempString := RightStr(FileLine, Length(FileLine) – Pointer);
 Cost[Index] := StrToFloat(TempString);

end;

Q6(c): Python

def Unpack(Index, FileLine):

 ## Pointer As Integer
 ## NextChar As Char
 ## TempString As String
 ASTERISK = '*'

 StockID[Index] = FileLine[:8] #characters 0 to 7

 Pointer = 9 #point to start of Description (skip the '*')
 NextChar = FileLine[Pointer]
 TempString = ""

 while NextChar <> ASTERISK:
 TempString = TempString + NextChar
 Pointer = Pointer + 1
 NextChar = FileLine[Pointer]

 Description[Index] = TempString
 Pointer = Pointer + 1
 NextChar = FileLine[Pointer]

 TempString = ""

 while NextChar <> ASTERISK:
 TempString = TempString + NextChar
 Pointer = Pointer + 1
 NextChar = FileLine[Pointer]

 Quantity[Index] = int(TempString)
 TempString = FileLine[Len(FileLine) – Pointer - 1:)

9608/21 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2021

© UCLES 2021 Page 17 of 17

 Cost[Index] = float(TempString)

Alternative

def Unpack(Index, FileLine):
 ## TempString As String

 StockID[Index] = FileLine[:8]
 TempString = FileLine[8:] // remove first 8 characters
 Description[Index], Quantity[Index], Cost[Index] =
(TempString.split(‘*’))

