

This document consists of 13 printed pages.

© UCLES 2020

[Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9608/42

Paper 4 Written Paper October/November 2020

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most
Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some
Cambridge O Level components.

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 2 of 13

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the
specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these
marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question
• the specific skills defined in the mark scheme or in the generic level descriptors for the question
• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the

scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
• marks are awarded when candidates clearly demonstrate what they know and can do
• marks are not deducted for errors
• marks are not deducted for omissions
• answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the

question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level
descriptors.

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 3 of 13

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may
be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or
grade descriptors in mind.

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 4 of 13

Question Answer Marks

1(a) • Bubble (sort)
• Insertion (sort)

2

1(b)(i) LowerBound UpperBound ValueFound ValueToFind MidPoint

0 9 FALSE 21 4

 3 1

2 2

 TRUE

One mark for columns 1 and 2, 1 mark for columns 3 and 4, 1 mark for column 5

3

1(b)(ii) Binary (search) 1

1(b)(iii) • 3 1

1(b)(iv) • 1 // 2 1

1(b)(v) • If UpperBound and LowerBound are the same // if value is on the upper bound or lower bound // if there is only 1
item in the list …

• … the last value is not checked // it won't be found // the while loop doesn't checks the last value

2

1(b)(vi) • List is not sorted // Binary search only works on a sorted list
• 2 is less than the midpoint // 2 is after a larger value // by example
• … so (13 to) 2 would be discarded after first comparison // it will be looking for 2 in the lower half // value looking for

will be discarded in first comparison

2

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 5 of 13

Question Answer Marks

2(a)
A

B

C

D

E

F

G

H

I

J

K

L

Week
number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

• A(2), B(3) following A, C(2) following B
• D(4) following C, E(6) following C
• F(2) following D, G(5) following D
• H(2) following G, L(2) following K
• I, J, K (2 each) following I

5

2(b)(i) A, B, C, D, G, H, K, L 1

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 6 of 13

Question Answer Marks

2(b)(ii) I, J, K // White-box, black-box, user testing
//
E, F, G // Graphics development, Focus group, Program remaining levels

1

2(c) PERT 1

Question Answer Marks

3(a) • person(clive).
• animal(guinea_pig).
• has_pet(clive, guinea_pig).
• has_pet(clive, gecko).

4

3(b) gecko, cat 1

3(c) • wants_pet(Z, Y)
• person(Z) // animal(Y)
• AND animal(Y) // AND person(Z)
• AND NOT
• has_pet(Z, Y)

5

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 7 of 13

Question Answer Marks

4(a) • Correct header and close (where applicable) with one parameter (ignore other parameters)
• parameter (any identifier) assigned to attribute FoodID
• Correct values assigned to Name ("") and Calories (0)

PYTHON
def __init__(self, NewFoodID):
 self.__FoodID = NewFoodID
 self.__Name = ""
 self.__Calories = 0

PASCAL
Constructor FoodItem.Create(NewFoodID : String);
Begin
 FoodID := NewFoodID;
 Name : = "";
 Calories := 0;
End;

VB
Public Sub New(ByVal NewFoodID As String)
 FoodID = NewFoodID
 Name = ""
 Calories = 0
End Sub

3

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 8 of 13

Question Answer Marks

4(b) • Correct function header and close (where applicable) with no parameter (if they have a return data type it must be
correct (Integer), but not necessary)

• Returns Calories without other input/assignment (using return command, or assigning to GetCalories)

PYTHON
def GetCalories(self):
 return(self.__Calories)

PASCAL
Function FoodItem.GetCalories() : Integer;
Begin
 GetCalories := Calories;
End

VB
Public Function GetCalories() As Integer
 Return Calories
End function

2

4(c) • Correct function header (and close) with one parameter passed (ignore additional parameters) (if they have a
return data type it must be correct (Boolean), but not necessary)

• Checks parameter is an integer between 0/1 and less than 2000.
• …Returns true if parameter is valid and assigns parameter to Calories
• …Returns false if invalid and does not assign the parameter to Calories

FUNCTION SetCalories(NumCalories : INTEGER) RETURNS BOOLEAN
 DECLARE Valid : BOOLEAN
 IF NumCalories > 0 AND NumCalories < 2000
 THEN
 Calories ← NumCalories
 Valid ← TRUE
 ELSE
 Valid ← FALSE
 ENDIF
 RETURN Valid
ENDFUNCTION

4

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 9 of 13

Question Answer Marks

4(d)(i) Two from:

• Limits access to given/set/get methods only // can only be accessed through the methods
• …attributes cannot be accidentally changed // ensure attribute integrity/security against accidental change (not

program)
• Use of set method allows for validation of attribute
• .. ensure attribute not set to inappropriate value // make sure attribute value is valid
• Ensures encapsulation

2

4(d)(ii) Two from:

• Child class can use/has the attributes/methods of its parent class (Accept transferring attributes/methods.
• The class DailyCalories inherits (attributes/methods) from the class CustomerProfile
• DailyCalories can use/extend the attributes/methods from CustomerProfile // by example

2

4(d)(iii) Two from:

• Child class method/attribute can override parent class method/attribute // related / parent and child class have
same method that has different functions/purpose

• GetTotalCalories()/SetTotalCalories() method from CustomerProfile overwritten/has different
function in DailyCalories

• TotalCalories in DailyCalories overrides TotalCalories in CustomerProfile

2

4(e) Two from:

• Writing a program as a sequence of (explicit) steps/commands // sequence of events/steps // step-by-step
instructions

• … to gain a required outcome/result // focus is on how to achieve a result / solve a problem
• The statements in the program manipulate the data
• An example would be procedural programming

2

4(f)(i) • Integration testing 1

4(f)(ii) • Acceptance testing 1

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 10 of 13

Question Answer Marks

4(f)(iii) Two from:

• Test number
• Type of test // type of test data
• Test description
• Expected outcome

2

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 11 of 13

Question Answer Marks

5 Label Op Code Operand Comment

 LDR #0 // initialise IX to zero [1]

 LDM #0
// initialise LENGTH [1]

 STO LENGTH

LOOP: IN // input character [1]

 CMP FULLSTOP // is character a FULLSTOP (.) ?
[1]

 JPE ENDP // jump to ENDP if TRUE

 STX MESSAGE
// store character in MESSAGE +
 contents of IX

[1]

 INC IX // increment IX [1]

 LDD LENGTH

// increment LENGTH [1] INC ACC

 STO LENGTH

 JMP LOOP // jump to LOOP [1]

ENDP: END // end program

LENGTH:

FULLSTOP: B01100000 // ASCII code for a full stop (.)

MESSAGE:

8

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 12 of 13

Question Answer Marks

6(a) • A to B to D including NULL pointer in D …
• … C not present // C present but nothing pointing to it

2

6(b) • Added to free space/list // free pointer points to C // last element in free space links to C 1

6(c) • Does not point to another node/address // end of list // end pointer 1

6(d) • Correct function header (and close), (sensible) parameter (Not boolean) (and return data type)
• Starting pointer set using StartPointer
• Check if current pointer is NULL
• Check if data at current pointer = parameter
• Updates/follows next pointer to current item's pointer
• Recursion or iteration used to check all values not linear search
• Returns correct pointer when value found
• Returns −1 when all items check and still not found

FUNCTION FindValue(Value : INTEGER) RETURNS INTEGER
 CurrentPointer ← StartPointer
 WHILE CurrentPointer <> NULL AND LinkedList[CurrentPointer].Data <> Value
 CurrentPointer ← LinkedList[CurrentPointer].Pointer
 ENDWHILE
 IF LinkedList[CurrentPointer].Data = Value
 THEN
 RETURN CurrentPointer
 ELSE
 RETURN -1
 ENDIF
ENDFUNCTION

8

9608/42 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 13 of 13

Question Answer Marks

6(e) Four from a single ADT (one for identifying and three for description):
e.g.
• Stack

- Linear structure
- Last in first out structure
- Has top and base stack pointers
- Uses push to add items to top of stack
- Uses pop to remove items from top of stack

• Queue
- Linear structure
- First in first out structure
- Has start and end of queue pointers
- Can be circular
- Uses enqueue to add item to end of queue
- Uses dequeue to remove item from start of queue

• Binary tree
- Each node can have up to two (child) nodes
- Parent node is above, and child nodes follow
- Each node contains the data and pointer(s)
- Has a root node
- Can have leaf nodes
- Can be output/searched in-order/post-order/pre-order
- Can be ordered or unordered
- Description of adding a new node // Description of ordered tree

• Class
- A class represents an object
- Objects are instances of classes
- (An object) has attributes and methods
- Classes can be inherited

• Hash table
- Key calculated from value
- .. (key) that represents a location // stores values in key locations
- Key used to access location
- Description of managing collisions

4

