

This document consists of 27 printed pages.

© UCLES 2020

[Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9608/23

Paper 2 Written Paper October/November 2020

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most
Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some
Cambridge O Level components.

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 2 of 27

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the
specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these
marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question
• the specific skills defined in the mark scheme or in the generic level descriptors for the question
• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the

scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
• marks are awarded when candidates clearly demonstrate what they know and can do
• marks are not deducted for errors
• marks are not deducted for omissions
• answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the

question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level
descriptors.

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 3 of 27

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may
be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or
grade descriptors in mind.

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 4 of 27

Question Answer Marks

1(a) One mark per bullet point

The purpose is:

• to express the algorithm in a level of sufficient detail // to split a large task into (smaller) sub-tasks
• so that it can be programmed // so that individual tasks are easier to solve // to make the problem more manageable /

understandable

2

1(b) Many acceptable answers, must be four different data types together with appropriate values
One mark per row

For example:

Data type Example data value

BOOLEAN FALSE

CHAR '!'

DATE 01/01/01

INTEGER 27

Note: STRING and REAL are excluded as these are given in the question.

4

1(c)(i) Max 1 mark, features include:

• Control Structures / selection statements / iteration statements / IO statements
• Modular structure (functions, procedures)
• Parameters to / from subroutines
• Variable declaration / assignment /data structures / OOP ref

1

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 5 of 27

Question Answer Marks

1(c)(ii) • Transferable skill 1

1(d) Max 3 marks, methods include:

• IDE features: breakpoints / single stepping / watch window
• Manually check program code / reading error report
• Trace table / dry run / White-box testing
• Use of appropriate test data
• Addition of output statement to follow changes to variables

3

Question Answer Marks

2(a) One mark per step (or equivalent):

1 Set Total to 0
2 Set AGradeCount to 0
3 Input Mark
4 Add Mark to Total
5 If Mark > 75 then increment AGradeCount
6 Repeat from Step 3 for 30 times
7 Output AGradeCount
8 Output Total / 30

8

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 6 of 27

Question Answer Marks

2(b)

One mark per row:

Statement Error

Code ← LEFT(3, "Europe") Parameters are reversed

Hour ← MID("ALARM:12:02", 7, 6)
Third param too big (should be max 5) // string too
short

Size ← LENGTH(27.5) Invalid type – param should be a string

Num ← INT(27/ (Count + 3) Missing closing bracket

Result ← "Conditional" AND "Loop" Wrong variable types / operator

5

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 7 of 27

Question Answer Marks

2(c) ‘Pseudocode’ solution included here for development and clarification of mark scheme.
Programming language example solutions appear in the Appendix.

Index ← 0
Status ← FALSE
WHILE Status <> TRUE
 Status ← TopUp()
 Index ← Index + 1
ENDWHILE

IF Index > 100
 THEN
 SetLevel("Super")
ENDIF

Mark as follows:

1 Set Index to 0 and Status to FALSE
2 Pre-condition loop
3 Assign value of TopUp() to Status in a loop
4 Increment Index in a loop
5 Test Index greater than 100 after loop
6 If TRUE then Call to SetLevel with param "Super"

6

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 8 of 27

Question Answer Marks

3(a) ‘Pseudocode’ solution included here for development and clarification of mark scheme.
Programming language example solutions appear in the Appendix.

PROCEDURE BubbleSort()
 DECLARE Temp : INTEGER
 DECLARE NoSwaps : BOOLEAN
 DECLARE Boundary, J : INTEGER

 Boundary ← 4999
 REPEAT
 NoSwaps ← TRUE
 FOR J ← 1 TO Boundary
 IF ProdNum[J]> ProdNum[J+1]
 THEN
 Temp ← ProdNum[J]
 ProdNum[J] ← ProdNum[J+1]
 ProdNum[J+1] ← Temp
 NoSwaps ← FALSE
 ENDIF
 ENDFOR
 Boundary ← Boundary - 1
 UNTIL NoSwaps = TRUE

ENDPROCEDURE

7

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 9 of 27

Question Answer Marks

3(a) Mark as follows, max 7 marks from 8 possible marks:

1 Procedure heading and ending
2 Conditional outer loop (may be count-controlled but if so must be >= 4999 iterations)
3 An inner loop
4 Correct range for inner loop
5 Comparison (element n with n + 1) in a loop
6 Swap array element in a loop
7 'No-Swap' mechanism: (both needed for mark):

o Conditional outer loop including flag reset
o Flag set in inner loop to indicate swap

8 Reducing Boundary in the outer loop

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 10 of 27

Question Answer Marks

4(a) FUNCTION Search(SearchString : STRING) RETURNS INTEGER

 DECLARE RetVal : INTEGER
 DECLARE Index : INTEGER

 RetVal ← -1
 Index ← 1

 WHILE Index <= 100 AND RetVal = -1
 IF NameList[Index] = SearchString
 THEN
 RetVal ← Index
 ENDIF
 Index ← Index + 1
 ENDWHILE

 RETURN RetVal

ENDFUNCTION

Mark as follows:
1 Function heading and ending including parameter
2 Declaration of integer for Index
3 Initialisation and increment of Index (implied in FOR loop)
4 Conditional loop // FOR loop with immediate RETURN if SearchString found
5 Comparison of array element with SearchString AND assigning just the first occurrence to RetVal OR setting

the termination condition
6 Return RetVal (correctly in both cases)

6

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 11 of 27

Question Answer Marks

4(b) • Adaptive maintenance 1

4(c) Ma 1 mark, reasons include:

• Program doesn’t perform as expected / does not meet the original specification
• Program contains errors / bugs
• Performance / efficiency needs improving
• New hardware has been introduced

1

4(d) One mark for each value
One mark for each explanation

Output Explanation

20 A copy of the variable itself is passed

25 A pointer to / the address of the variable is passed

4

4(e) Max 2 marks, example answers:

• Allows the module to be called from many / multiple places // re-used
• Module code can be (independently) tested and debugged once and can then be used repeatedly
• If the module task changes the change needs to be made only once
• Reduces unnecessary code duplication
• Allows modules to be shared among many programmers / given to programmers with specific skills
• Makes the program easier to work on / debug / test / etc

2

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 12 of 27

Question Answer Marks

5(a) FUNCTION AddHashtag (HashTag : STRING) RETURNS BOOLEAN
 DECLARE Index : INTEGER
 DECLARE Added : BOOLEAN
 CONSTANT EMPTY = ""

 Added ← FALSE
 Index ← 1 // first element

 REPEAT
 IF TagString[Index] = EMPTY
 THEN
 TagString[Index} ← HashTag
 TagCount[Index] ← 1
 Added ← TRUE
 ELSE
 Index ← Index + 1
 ENDIF

 UNTIL Index > 10000 OR Added = TRUE

 RETURN Added
ENDFUNCTION

1 mark for each of the following:

1 Declaration of two local variables: Integer for index & Boolean for return value (unless immediate Return used)
2 Conditional loop through all elements until empty element found OR end of array
3 Test if TagString element is empty in a loop
4 If so then assign HashTag to TagString[] and 1 to TagCount[]
5 Set loop termination
6 Return Boolean (for both cases)

6

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 13 of 27

Question Answer Marks

5(b)

‘Pseudocode’ solution included here for development and clarification of mark scheme.
Programming language example solutions appear in the Appendix.

FUNCTION CountHashtag (Message : STRING) RETURNS INTEGER
 DECLARE TagNum, StartPos : INTEGER
 DECLARE Found : BOOLEAN

 TagNum ← 0
 Found ← TRUE

 REPEAT
 StartPos ← GetStart(Message, TagNum + 1)
 IF StartPos = -1
 THEN
 Found ← FALSE
 ELSE
 TagNum ← TagNum + 1
 ENDIF
 UNTIL NOT Found

 RETURN TagNum

ENDFUNCTION

1 mark for each of the following:

1 Function heading and ending including parameter
2 Declaration and initialisation of local integer for count (TagNum)
3 Conditional loop through message
4 Use of GetStart() in a loop
5 Test GetStart() return value for -1 and increment count accordingly in a loop
6 Return integer value

6

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 14 of 27

Question Answer Marks

5(c)

‘Pseudocode’ solution included here for development and clarification of mark scheme.
Programming language example solutions appear in the Appendix.

FUNCTION IncrementHashtag (HashTag : STRING) RETURNS BOOLEAN
 DECLARE Index : INTEGER
 DECLARE Found : BOOLEAN

 Found ← FALSE
 Index ← 1 // first element

 REPEAT
 IF TagString[Index] = HashTag
 THEN
 TagCount[Index] ← TagCount[Index] + 1
 Found ← TRUE
 ELSE
 Index ← Index + 1
 ENDIF
 UNTIL Index > 10000 OR Found = TRUE
 RETURN Found
ENDFUNCTION

1 mark for each of the following:

1 Conditional loop until hashtag found or end of array
2 Compare element value to parameter in a loop
3 If found, increment corresponding TagCount element
4 Return Boolean correctly in both cases

4

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 15 of 27

Question Answer Marks

5(d) PROCEDURE OutputMostPop()
 DECLARE Index : INTEGER
 DECLARE MostPopTag : STRING
 DECLARE Max : INTEGER // the integer value of the biggest number
 DECLARE Count : INTEGER

 CONSTANT EMPTY = ""

 Max ← −1

 FOR Index ← 1 To 10000
 IF TagCount[Index] > Max
 THEN
 Max ← TagCount[Index]
 Count ← 1 // there is only one max value
 MostPopTag ← TagString[Index]
 ELSE
 IF TagCount[Index] = Max
 THEN
 Count ← Count + 1 // another max value
 ENDIF
 ENDIF
 ENDFOR

 IF Count = 1
 THEN
 OUTPUT "The most popular hashtag is: ", MostPopTag, "It occurs: ", Max," times.”
 ELSE
 OUTPUT "The maximum hashtag count is: ",Max,__
 "The number of hashtags with this count is: ", Count
 ENDIF
ENDPROCEDURE

8

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 16 of 27

Question Answer Marks

5(d) 1 mark for each of the following:

1 Initialise Max to a value less than 1 or to TagCount[1]
2 Loop through all elements
3 Test if TagCount value > Max in a loop
4 and if so set Max to TagCount value
5 and save TagString element (or array index) and set Count to 1 (unless counting is separate)
6 ELSE If TagCount value = Max, increment Count (or via separate loop)
7 Output for single max after the loop
8 Or Output for multiple max after the loop

Alternative "two-loop" solution:

PROCEDURE OutputMostPop()
 DECLARE Index : INTEGER
 DECLARE MostPopTag : STRING
 DECLARE Max : INTEGER //The integer value of the biggest number
 DECLARE MaxCount : INTEGER

 CONSTANT EMPTY = ""

 Max ← -1

 FOR Index ← 1 To 10000
 IF TagCount[Index] > Max
 THEN
 Max ← TagCount[Index]
 MostPopTag ← TagString[Index]
 ENDIF
 ENDFOR

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 17 of 27

Question Answer Marks

5(d) MaxCount ← 0
 FOR Index ← 1 To 10000
 IF TagCount[Index] = Max
 THEN
 MaxCount ← MaxCount + 1
 ENDIF
 ENDFOR

 IF MaxCount = 1
 THEN
 OUTPUT "The most popular hashtag is: ", MostPopTag, ". It occurs: ", Max," times.”
 ELSE
 OUTPUT "The mamimum value is: ",Max, ". It occurred ", MaxCount, " times."
 ENDIF
ENDPROCEDURE

*** End of Mark Scheme – example program code solutions follow ***

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 18 of 27

Program Code Example Solutions

Q2 (c): Visual Basic

Index = 0
Status = FALSE
Do While Status <> TRUE
 Status = TopUp()
 Index = Index + 1
Loop

If Index > 100 Then
 SetLevel("Super")
End If

Q2 (c): Pascal

Index := 0;
Status := FALSE;

while Status <> TRUE do
begin
 Status := TopUp();
 Index := Index + 1;
end;

if Index > 100 then
 SetLevel("Super");

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 19 of 27

Q2 (c): Python

Index = 0
Status = FALSE
while Status <> TRUE:
 Status = TopUp()
 Index = Index + 1

if Index > 100:
 SetLevel("Super")

Q3: Visual Basic

Sub BubbleSort()
 Dim Temp As Integer
 Dim NoSwaps As Boolean
 Dim Boundary, J As Integer

 Boundary = 4998
 Do
 NoSwaps = TRUE
 For J = 0 To Boundary
 If ProdNum(J)> ProdNum(J+1)Then
 Temp = ProdNum(J)
 ProdNum(J) = ProdNum(J+1)
 ProdNum(J+1) = Temp
 NoSwaps = FALSE
 End If
 Next
 Boundary = Boundary - 1
 Loop Until NoSwaps = TRUE

End Sub

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 20 of 27

Q3: Pascal

Peocedure BubbleSort();
var
 Temp: Integer;
 NoSwaps : Boolean;
 Boundary, J : Integer;

begin
 Boundary := 4999;
 repeat
 NoSwaps := TRUE;
 for J := 1 To Boundary do
 begin
 if ProdNum[J] > ProdNum[J+1] then
 begin
 Temp := ProdNum[J];
 ProdNum[J] := ProdNum[J+1];
 ProdNum[J+1] := Temp;
 NoSwaps := FALSE;
 end;
 end;
 Boundary := Boundary – 1;
 until NoSwaps = TRUE;

end;

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 21 of 27

Q3: Python

def BubbleSort():
 # Temp As Integer
 # NoSwaps As Boolean
 # Boundary, J As Integer

 NoSwaps = False
 Boundary = 4999

 while not NoSwaps:
 NoSwaps = True
 for J in range(Boundary):
 if ProdNum[J]> ProdNum[J+1]:
 Temp = ProdNum[J]
 ProdNum[J] = ProdNum[J+1]
 ProdNum[J+1] = Temp
 NoSwaps = FALSE

 Boundary = Boundary – 1

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 22 of 27

Q5 (b): Visual Basic

Function CountHashtag (Message As STRING) As INTEGER
 Dim TagNum As INTEGER
 Dim StartPos As INTEGER
 Dim Found As BOOLEAN

 TagNum = 0
 Found = TRUE

 Do
 StartPos = GetStart(Message, TagNum + 1)
 If StartPos = -1 Then
 Found = FALSE
 Else
 TagNum = TagNum + 1
 End If
 Loop Until No Found

 Return TagNum

End Function

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 23 of 27

Q5 (b): Pascal

Function CountHashtag (Message : STRING) : INTEGER;
var
 TagNum : Integer;
 StartPos : Integer;
 Found : Boolean;

begin
 TagNum := 0;
 Found:= TRUE;

 repeat
 StartPos := GetStart(Message, TagNum + 1);
 if StartPos = -1 then
 Found := FALSE
 else
 TagNum := TagNum + 1;

 until Not Found;

 CountHashtag := TagNum;

end;

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 24 of 27

Q5 (b): Python

def CountHashtag (Message)
 # TagNum, StartPos As INTEGER
 # Found As BOOLEAN

 TagNum = 0
 Found = TRUE

 while Found:
 StartPos = GetStart(Message, TagNum + 1)
 if StartPos == -1:
 Found = FALSE
 else:
 TagNum = TagNum + 1

 return TagNum

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 25 of 27

Q 5 (c): Visual Basic

Function IncrementHashtag (HashTag As String) As Boolean
 Dim Index As Integer
 Dim Found As Boolean

 Found = False
 Index = 1 'First element

 Do
 If TagString(Index) = HashTag Then
 TagCount(Index) = TagCount(Index) + 1
 Found = True
 Else
 Index = Index + 1
 End If
 Loop Until Index > 10000 Or Found = True

 Return Found
End Function

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 26 of 27

Q 5 (c): Pascal

Function IncrementHashtag (HashTag : String) : Boolean;
var
 Index : Integer;
 Found : Boolean

begin
 Found := FALSE;
 Index := 1; //First element

 repeat
 If TagString[Index] = HashTag then
 begin
 TagCount[Index] := TagCount[Index] + 1;
 Found := TRUE;
 end
 else
 Index := Index + 1;

 until Index > 10000 OR Found = TRUE;

 IncrementHashtag := Found;

end;

9608/23 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

October/November 2020

© UCLES 2020 Page 27 of 27

Q 5 (c): Python

def IncrementHashtag (HashTag):
 # Index As Integer
 # Found As Boolean

 Found = FALSE
 Index = 0 #First element

 while not Found and Index < 10000:
 if TagString[Index] == HashTag:
 TagCount[Index] = TagCount[Index] + 1
 Found = TRUE
 else:
 Index = Index + 1

 Return Found

