
This document consists of 15 printed pages.

© UCLES 2020 [Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9608/22

Paper 2 Written Paper May/June 2020

MARK SCHEME

Maximum Mark: 75

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the
question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the
proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also
provides the most likely acceptable alternative responses expected from students. Examiners usually review
the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the
June series, Examiners were unable to consider the acceptability of alternative responses, as there were no
student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However,
because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June
2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge
IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level
components.

be
st
ex
am
he
lp
.c
om

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 2 of 15

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level descriptors
for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question
• the specific skills defined in the mark scheme or in the generic level descriptors for the question
• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit

is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do
• marks are not deducted for errors
• marks are not deducted for omissions
• answers should only be judged on the quality of spelling, punctuation and grammar when these

features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 3 of 15

Question Answer Marks

1(a) One mark for name
Max two marks for description: one for each underlined word or phrase (or
equivalent)

Name: Sequence
Description: Instructions / lines of code are executed in a fixed order

OR

Name: Assignment
Description: A value is given to a variable

3

1(b) One mark per bullet point:

• Knowledge / experience of one programming language...

• ... can be applied to an unknown language // will help recognise control

structures (accept by example) in an unknown language

2

1(c) One mark per bullet point:

• Count controlled – the number of iterations is known / fixed

• Post condition – the number of iterations depends on some condition
being tested at the end / before the loop is repeated // at least one
iteration is always executed

For conditional: reject answer that also applies to pre-conditional

2

1(d) Examples include:

• context sensitive prompts
• (dynamic) syntax checking
• use of colours to highlight key words / pretty printing / highlighting unused

variables (etc)
• Formatting (incl. collapsing and expanding blocks)
• (UML) modelling
• Text editor (or by reference to a function such as copy & paste)
• Built-in (library) functions

Do not accept answers relating to debugging features

Max 3

3

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 4 of 15

Question Answer Marks

2(a) One mark per bullet point:

• Parameters passed between modules // the interface between modules
• Module Iteration
• Module selection

Max 2

2

2(b)(i) Advantages include:

• Easier to solve / implement / program the solution as online shopping is

a complex task

• Easier to debug / maintain as each module can be tested separately e.g.

test FillBasket() first then test Checkout()

• Tasks may be shared among a team of programmer. e.g. Checkout()

and Search() modules could be developed in parallel / by teams with
different expertise

Note:
Must include reference to given scenario to achieve all 3 marks - Max 2 if no
reference.

3

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 5 of 15

Question Answer Marks

2(b)(ii)

One Mark for
1 Three middle row boxes correctly labelled and connected to Shop()
2 Two bottom row boxes correctly labelled and connected to

FillBasket()
3 Iteration arrow on FillBasket()
4 Return parameters from ChooseSlot() and Checkout()
5 Return parameters from Search()
6 Two input parameters to Add()

Notes:
Parameter types must be as shown but ignore parameter names (if given)

6

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 6 of 15

Question Answer Marks

3 FUNCTION CheckCourse(Course : REAL) RETURNS INTEGER
 DECLARE Adjust, Check : INTEGER

 Check ← INT(Deviate(Course))
 Adjust ← 255

 CASE OF Check
 -20 to -1: Adjust ← 10
 0 : Adjust ← 0
 1 to 20 : Adjust ← -10
 OTHERWISE CALL Alert()
 ENDCASE

 RETURN Adjust

ENDFUNCTION

1 mark for each of the following:

1 FUNCTION heading and ending including parameter as given above
2 Assign value to Check using integer conversion and intialise Adjust to

255
3 CASE ... ENDCASE
4 Conditions −20 to −1 and 1 to 20 (and corresponding assignments)
5 Condition 0 (and corresponding assignment)
6 OTHERWISE
7 Return Adjust

7

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 7 of 15

Question Answer Marks

4(a) DECLARE Random : ARRAY [1:10] OF INTEGER
DECLARE NextNum, Index, Rnum : INTEGER
DECLARE Exists : BOOLEAN

NextNum ← 1 // index position for the next random number

REPEAT
 Rnum ← INT(RAND(100)) + 1 // from original question
 Exists ← FALSE
 FOR Index ← 1 to NextNum - 1 // search for Rnum
 IF Random[Index] = Rnum
 THEN
 Exists ← TRUE
 ENDIF
 ENDFOR

 IF Exists = FALSE
 THEN
 Random[NextNum] ← Rnum // store Rnum
 NextNum ← NextNum + 1 // increment index
 ENDIF
UNTIL NextNum > 10

1 mark for each of the following:

1 Conditional (outer) loop to generate 10 values
2 Inner loop to search array for duplicate number
3 Check for duplicate by comparing number generated with array element

in a loop
4 Avoid checking uninitialised elements // array initialisation to rogue value

at start of algorithm
5 If Rnum is a duplicate then repeat outer loop
6 If Rnum not a duplicate then assign to array element and Increment

index

Notes:
Max 5 if statement to generate random number (as given in Q) not present or
incorrectly placed.

6

4(b) Adaptive Maintenance 1

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 8 of 15

Question Answer Marks

5(a) Mark as follows:
1 SET Name to ""
2 SET Index to 1
3 SELECT the character from input parameter string at Index position
4 IF character is not colon then concatenate character with Name
5 …INCREMENT Index
6 …REPEAT from step 3
7 RETURN Name

Alternative Solution:

Mark as follows:
1 SET Index to 1
2 SELECT the character from input parameter string at Index position
3 IF character is colon then go to 5
4 Else INCREMENT Index and repeat from 2
5 Extract a substring from the left of the parameter string (and assign this to

variable Name)
6 ...Using Index -1 for the length
7 RETURN Name

Note:
Mark points may be combined for equivalent marks
e.g a suitable structured English description of the pseudocode statement
below satisfies MP 5, 6 and 7:

RETURN LEFT(ParamString, Index – 1)

7

5(b)(i) Description:

• Reduce the number of items to be checked by one after each pass

• Use a flag variable to stop the outer loop
• ... after no more swaps made on a single pass of the inner loop
• ... resetting before the inner loop starts, and setting it whenever a swap is

made

4

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 9 of 15

Question Answer Marks

5(b)(ii) 'Pseudocode' solution included here for development and clarification of mark
scheme.
Programming language example solutions appear in the Appendix.

PROCEDURE BubbleSort()
 DECLARE Temp : STRING
 DECLARE NoSwaps : BOOLEAN
 DECLARE Boundary, J : INTEGER

 Boundary ← 999
 REPEAT
 NoSwaps ← TRUE
 FOR J ← 1 TO Boundary
 IF Contact[J] > Contact[J+1]
 THEN
 Temp ← Contact[J]
 Contact[J] ← Contact[J+1]
 Contact[J+1] ← Temp
 NoSwaps ← FALSE
 ENDIF
 ENDFOR
 Boundary ← Boundary - 1
 UNTIL NoSwaps = TRUE

ENDPROCEDURE

Mark as follows:

1 Procedure heading and ending
2 Outer loop
3 Inner loop
4 Correct comparison in a loop
5 Correct swap of array elements in a loop
6 'NoSwap' mechanism: Post-conditional outer loop including flag reset
7 'NoSwap' mechanism: Set flag in inner loop to indicate swap
8 Reducing Boundary in the outer loop

8

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 10 of 15

Question Answer Marks

6(a)(i) FUNCTION AddTime(StartTime : STRING, Duration : INTEGER)_
 RETURNS STRING

 DECLARE NewTime : STRING
 DECLARE StartMinutes, StartHours : INTEGER
 DECLARE Total, NewMinutes, NewHours : INTEGER

 StartHours ← STRING_TO_NUM(LEFT(StartTime,2))
 StartMinutes ← STRING_TO_NUM(RIGHT(StartTime, 2))
 Total ← (StartHours * 60) + StartMinutes + Duration
 NewHours ← DIV(Total, 60)
 NewMinutes ← MOD(Total, 60)

 NewTime ← ""

 IF NewHours < 10
 THEN
 NewTime ← '0' // add leading zero to hours
 ENDIF

 NewTime ← NewTime & NUM_TO_STRING(NewHours) & ':'

 IF NewMinutes < 10
 THEN
 NewTime ← NewTime & '0'// add leading zero
 ENDIF

 NewTime ← NewTime & NUM_TO_STRING(NewMinutes)

 RETURN NewTime

ENDFUNCTION

1 mark for each of the following:

1 Function heading and ending including parameters
2 Extract StartHours and convert to integer
3 Extract StartMinutes and convert to integer
4 Add Duration to StartTime in minutes
5 Use DIV() to extract NewHours
6 Use MOD() to extract NewMinutes
7 Adding leading zeros when necessary to hours and minutes eg “09:05”
8 Return concatentated string

Note:
Accept alternative methods for calculation of NewHours and NewMinutes

8

6(a)(ii) To test every path through the algorithm 1

6(a)(iii) • Logical error
• Algorithm is incorrect // program produces unexpected result / incorrect

calculation is performed

2

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 11 of 15

Question Answer Marks

6(b) Test data:
Any string value where hours are > “24” or minutes > “59”

Explanation:
Suitable explanation

Note:
Accept times that would also be invalid for the given scenario.

2

6(c) 'Pseudocode' solution included here for development and clarification of mark
scheme.
Programming language example solutions appear in the Appendix.

PROCEDURE GetTotals()

 DECLARE BoatNum : INTEGER
 DECLARE Paid : REAL
 DECLARE FileLine : STRING

 FOR BoatNum ← 1 TO 17
 Total[BoatNum] ← 0
 ENDFOR

 OPENFILE "Hirelog.txt" FOR READ

 WHILE NOT EOF("Hirelog.txt")
 READFILE "Hirelog.txt", FileLine
 BoatNum ← STRING_TO_NUM(LEFT(FileLine, 2))
 Paid ← STRING_TO_NUM (RIGHT(FileLine,__
 LENGTH(Fileline) – 8))
 Total[BoatNum] ← Total[BoatNum] + Paid

 ENDWHILE

 CLOSEFILE "Hirelog.txt"

ENDPROCEDURE

One mark for each of the following:

1 Procedure heading and ending (where appropriate) with no parameters
2 Initialisation of elements in Total array
3 OPEN "Hirelog.txt" in read mode and CLOSE after use
4 Loop until EOF()
5 Read line from file in a loop
6 Extract and convert BoatNum
7 Extract and convert Paid
8 Update appropriate array total in a loop

8

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 12 of 15

Program Code Example Solutions
To be reviewed at STM

Q5(b)(i): Visual Basic

Sub BubbleSort()
 Dim Temp As String
 Dim NoSwaps As Boolean
 Dim Boundary, J As Integer

 Boundary = 999
 Do
 NoSwaps = TRUE
 For J = 1 To Boundary
 If Contact(J) > Contact(J+1) Then
 Temp = Contact(J)
 Contact(J) = Contact(J+1)
 Contact(J+1) = Temp
 NoSwaps = FALSE
 End If
 Next
 Boundary = Boundary - 1
 Loop Until NoSwaps = TRUE

End Sub

Q5(b)(i): Pascal

procuedre BubbleSort()
var
 Temp : String;
 NoSwaps : Boolean;
 Boundary, J : Integer;

 Boundary := 999
 repeat
 begin
 NoSwaps := TRUE
 for J := 1 to Boundary do
 begin
 if Contact[J] > Contact[J+1]then
 begin
 Temp := Contact[J];
 Contact[J] := Contact[J+1];
 Contact[J+1] := Temp;
 NoSwaps := FALSE;
 end;
 end;

 Boundary := Boundary – 1
 end;
 until NoSwaps = TRUE;

End Sub

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 13 of 15

Q5(b)(i): Python

def BubbleSort()
 # Temp : String
 # NoSwaps : Boolean
 # Boundary, J : Integer

 Boundary = 999
 NoSwaps = TRUE

 while NoSwaps == TRUE:
 NoSwaps = TRUE
 For J in range(Boundary + 1)
 If Contact[J] > Contact[J+1]:
 Temp = Contact[J]
 Contact[J] = Contact[J+1]
 Contact[J+1] = Temp
 NoSwaps = FALSE

 Boundary = Boundary - 1

End Sub

Q6(c): Visual Basic

Sub GetTotals()

 Dim BoatNum As Integer
 Dim Paid As Real
 Dim File As StreamReader("Hirelog.txt")

 For BoatNum = 1 To 17
 Total(BoatNum) = 0
 Next

 Do While File.Peek >= 0
 FileLine = File.ReadLine()
 BoatNum = CInt(Left(FileLine, 2))
 Paid = CSng(Right(FileLine, Len(Fileline) – 8))
 Total(boatnumber) = Total(boatbnumber) + Paid
 Loop

 File.Close()

End Sub

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 14 of 15

Q6(c): Pascal

procedure GetTotals()

var
 BoatNum : Integer;
 Paid : Real;
 MyFile : testfile;

 for BoatNum := 1 to 17 do
 Total[BoatNum] := 0;

 assignFile(MyFile, "Hirelog.txt");
 reset(MyFile);

 while not eof(MyFile) do
 begin
 readln(MyFile, FileLine);
 BoatNum = StrToInt(copy(FileLine, 1, 2));
 Paid = StrToFloat(copy(FileLine, 9, length(Fileline) – 8));
 Total(boatnumber) = Total(boatbnumber) + Paid;
 end;

 close(MyFile)

end;

Alternative FreePascal string functions) :

 BoatNum := LeftStr(FileLine, 2);

 Paid := StrToFloat(RightStr(FileLine, length(Fileline) – 8));

9608/22 Cambridge International AS & A Level – Mark Scheme
PUBLISHED

May/June 2020

© UCLES 2020 Page 15 of 15

Q6(c): Python

def GetTotals()

 # BoatNum : Integer
 # Paid : Real
 # File : File Handle
 # FileData : String

 For BoatNum in range (1, 18)
 Total[BoatNum] = 0
 Next

 File = open("Hirelog.txt", "r")
 FileData = File.readline()
 while FileData != "":
 FileLine = File.ReadLine()
 BoatNum = int(FileLine[1, 3])
 Paid = float(FileLine[8, len(Fileline) – 7))
 Total[boatnumber] = Total[boatbnumber] + Paid
 FileData = File.readline()

 File.Close()

