
This document consists of 13 printed pages.

© UCLES 2019 [Turn over

Cambridge Assessment International Education
Cambridge International Advanced Subsidiary and Advanced Level

COMPUTER SCIENCE 9608/43
Paper 4 Written Paper May/June 2019

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most
Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and
some Cambridge O Level components.

be
st
ex
am
he
lp
.c
om

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 2 of 13

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level descriptors
for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question
• the specific skills defined in the mark scheme or in the generic level descriptors for the question
• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit

is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do
• marks are not deducted for errors
• marks are not deducted for omissions
• answers should only be judged on the quality of spelling, punctuation and grammar when these

features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 3 of 13

Question Answer Marks

1(a)(i) 1 mark for correct stack

orange

purple

green

blue

red

1

1(a)(ii) 1 mark for correct stack

black

green

blue

red

1

1(b) 1 mark per bullet point to max 3
• (Linear) data structure
• First in First out // FIFO // An item is added to the end of the queue and an item

is removed from the front
• All items are kept in the order they are entered
• It has a head pointer and a tail pointer
• Can be static or dynamic
• A queue can be circular
• when the (tail) pointer reaches the last position it returns to the first

3

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 4 of 13

Question Answer Marks

2(a)(i) 1 mark per bullet point
• 95 to left of 97
• 109 to left of 121
• 135 to right of 125
• 149 to right of 135
• Null points in all places and no inappropriate pointers

5

RootPointer

LeftPointer RightPointer

99

97

121 Ø 135

Ø

95 Ø Ø

125

Ø

109 149 Ø Ø Ø Ø

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 5 of 13

Question Answer Marks

2(a)(ii) 1 mark per bullet point

• FreePointer as 8
• 99
• 125
• 121 and 97
• 109 and 95
• 135 and 149

RootPointer Index LeftPointer Data RightPointer

0 [0] 3 99 1

 [1] 2 125 6

FreePointer [2] 4 121 null

8 [3] 5 97 null

 [4] null 109 null

 [5] null 95 null

 [6] null 135 7

 [7] null 149 null

 [8]

6

2(b) 1 mark for each completed section

FUNCTION FindElement(Item : INTEGER) RETURNS INTEGER
 CurrentPointer ← RootPointer
 WHILE CurrentPointer <> NullPointer
 IF List[CurrentPointer].Data <> Item
 THEN
 CurrentPointer ← List[CurrentPointer].Pointer
 ELSE
 RETURN CurrentPointer
 ENDIF
 ENDWHILE
 CurrentPointer ← NullPointer
 RETURN CurrentPointer
ENDFUNCTION

6

2(c)(i) 1 mark per bullet point to max 3
e.g.
• A sequence of steps that change the state of the program
• The steps are in the order they should be carried out
• e.g. procedural programming/language
• Groups code into self-contained blocks // split the program into modules
• which are subroutines // by example

3

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 6 of 13

Question Answer Marks

2(c)(ii) 1 mark per bullet point to max 3
e.g.
• Creates classes
• as a blueprint for an object // objects are instances of classes
• that have properties/attributes and methods
• that can be private to the class // properties can only be accessed by the

class's methods // encapsulation
• Subclasses can inherit from superclasses (child and parent)
• A subclass can inherit the methods and properties from the superclass
• A subclass can change the methods from the superclass // subclass can use

polymorphism
• Objects can interact with each other

3

2(d)(i) 1 mark per bullet point

• Method header and close (where appropriate)
• with InputPlayerID parameter
• Initialise Score to 0
• Initialise Category to "Not Qualified"
• Initialise PlayerID to parameter

PYTHON
def__init__(self, InputPlayerID):
 self.__Score = 0
 self.__Category = "Not Qualified"
 self.__PlayerID = InputPlayerID
PASCAL
Constructor Player.Create(InputPlayerID);
begin
 Score := 0 ;
 Category := 'Not Qualified' ;
 PlayerID := InputPlayerID;
end;
VB
Public Sub New (InputPlayerID)
 Score = 0
 Category = "Not Qualified"
 PlayerID = InputPlayerID
End Sub

5

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 7 of 13

Question Answer Marks

2(d)(ii) 1 mark per bullet point

• 1 get Method header without parameter (returning correct data type if given)
• returning the property
• A second working Get
• A third working Get

PYTHON
def GetScore():
 return (Score)
def GetCategory():
 return (Category)
def GetPlayerID():
 return (PlayerID)

PASCAL
function GetScore():Integer;
begin
 GetScore:= Score;
end;
function GetCategory():String;
begin
 GetCategory:= Category;
end;
function GetPlayerID():String;
begin
 GetPlayerID:= PlayerID;
end;

VB
Public Function GetScore() As Integer

Return Score
End Function
Public Function GetCategory() As String

Return Category
End Function
Public Function GetPlayerID() As String

Return PlayerID
End Function

4

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 8 of 13

Question Answer Marks

2(d)(iii) 1 mark per bullet point

• Set method header and close (where appropriate)
• Input value
• Looping until input value is correct length
• storing valid input value in PlayerID

PYTHON
def SetPlayerID(self)
 PlayerID = input("Enter your player ID")
 while len(PlayerID) > 15 and len(PlayerId) < 4

PlayerID = input("Must be <=15 AND >=4 characters long.
Enter your player ID")

PASCAL
Procedure SetPlayerID ()
 WriteLn ('Enter your player ID');
 ReadLn(PlayerID);
 while length(PlayerID) > 15 and length(PlayerID) < 4 do
 begin

WriteLn('Must be <=15 AND >=4 characters long. Enter
your player ID');

 ReadLn(PlayerID);
 end;

VB
Public Sub SetPlayerID()
 Console.WriteLine ("Enter your player ID")
 PlayerID = Console.ReadLine()
 While Len(PlayerID) > 15 and Len(PlayerID) < 4

Console.WriteLine ("Must be <=15 AND >=4 characters
long. Enter your player ID")

 PlayerID = Console.ReadLine()
 End While
End Sub

4

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 9 of 13

Question Answer Marks

2(d)(iv) 1 mark per bullet point

• Function header and close (where appropriate) and takes ScoreInput as

parameter
• Check if 0 <= ScoreInput <= 150
• if valid, set Score to parameter
• if not valid, output error
• Returns TRUE if valid and returns FALSE if not valid

PYTHON
def __SetScore(ScoreInput):
 if ScoreInput >=0 and ScoreInput <=150:
 IsValid = True
 self__Score = ScoreInput
 else:
 print("Error")
 IsValid = False
Return(IsValid)

PASCAL
function Player.SetScore(ScoreInput: Integer) : Boolean;
begin
 If (ScoreInput >=0) AND (ScoreInput <=150) Then
 IsValid := True;
 result := ScoreInput;
 Else
 WriteLn('Error')
 result := False;
end;

VB
Public Function SetScore(ByVal ScoreInput As Integer) As
Boolean
 If (ScoreInput >=0) And (ScoreInput <=150) Then
 Return True
 Score = ScoreInput
 Else
 Console.Writeline("Error")
 Return False
 End If
End Function

5

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 10 of 13

Question Answer Marks

2(d)(v) 1 mark per bullet point

• Procedure header and close (where appropriate)
• Accessing Score attribute
• Correct selection to assign each category
• storing in Category attribute

PYTHON
def SetCategory()
 if self.__Score >120:
 self.__Category = "Advanced"
 elif self.__Score >80:
 self.__Category = "Intermediate"
 elif self.__Score>=50:
 self.__Category = "Beginner"
 else:
 self.__Category = "Not Qualified"

PASCAL
procedure player.SetCategory()
begin
 If Score >120 Then
 Category := "Advanced";
 Else If Score >80 Then
 Category := "Intermediate";
 Else If Score >= 50 Then
 Category := "Beginner";
 Else
 Category := "Not Qualified";
end;

VB
Public Sub SetCategory()
 If Score >120 Then
 Category = "Advanced"
 ElseIf Score >80 Then
 Category = "Intermediate"
 ElseIf Score >=50 Then
 Category = "Beginner"
 Else
 Category = "Not Qualified"
 End If
End Sub

4

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 11 of 13

Question Answer Marks

2(d)(vi) 1 mark per bullet point

• CreatePlayer() header and close (where appropriate)
• Input of score and PlayerID with suitable prompts
• Create instance of Player named JoannePlayer
• with PlayerID as parameter
• Call method SetScore for JoannePlayer with parameter Score
• storing return value
• outputting appropriate message for not valid
• Call SetCategory for JoannePlayer
• Output Category for JoannePlayer
• using GetCategory for object Joanne

PYTHON
def CreatePlayer():
 InputPlayerID = input("Enter your chosen ID")
 Score = int(input("Please enter the score"))
 JoannePlayer = Player(InputPlayerID)
 if JoannePlayer.SetScore(Score) == false:
 print("Invalid score")
 else:
 JoannePlayer.SetCategory()
 print(JoannePlayer.GetCategory)

PASCAL
procedure CreatePlayer();
 var
 playerID : String;
 isValid : boolean;
 JoannePlayer : Player;
 score : integer;
 begin
 Writeln(Enter Player ID: ');
 Readln(playerID);
 Writeln('Enter score: ');
 Readln(score);
 JoannePlayer := Player.Create(PlayerID);
 isValid := JoannePlayer.SetScore(Score);
 if isValid = true:
 JoannePlayer.SetCategory();
 Writeln(JoannePlayer.GetCategory());
 else:
 Writeln("Invalid score")
end;

8

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 12 of 13

Question Answer Marks

2(d)(vi) VB
Sub CreatePlayer()
 Dim Score As Integer, InputPlayerID As String
 Console.WriteLine("Please enter your chosen ID")
 InputPlayerID = Console.ReadLine()
 Console.WriteLine("Please enter the score")
 Score = Console.ReadLine()

 Dim JoannePlayer As New Player(InputPlayerID)
 if JoannePlayer.SetScore(Score) = True then
 JoannePlayer.SetCategory()
 Console.WriteLine(JoannePlayer.GetCategory())
 else
 Console.Writeline("Invalid score")
 endif
End Sub

2(e) 1 mark per bullet point

• 3 correct Normal test data
• 3 correct Abnormal test data
• 3 correct Boundary test data

Category Type of test data Example test data

Beginner Normal e.g. 75

Abnormal e.g. 85 / bob

Boundary 80, 50

Intermediate Normal e.g. 95

Abnormal e.g. 70 / bob

Boundary 81, 120

Advanced Normal e.g. 125

Abnormal e.g. 115 / bob

Boundary 121, 150

3

2(f)(i) Insertion sort 1

2(f)(ii) One from:
• Bubble sort
• Merge sort

1

9608/43 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

May/June 2019

© UCLES 2019 Page 13 of 13

Question Answer Marks

2(f)(iii) 1 mark per shaded section

Item NumberOfScores InsertScore Index
ArrayData

0 1 2 3 4

 99 125 121 109 115

1 5 125 0 (125)

2 121 1 125

 0 121

3 109 2 125

 1 121

 0 109

4 115 3 125

 2 121

 1 115

7

Question Answer Marks

3(a) 1 mark per bullet point to max 2

• It is defined in terms of itself // it calls itself
• It has a stopping condition // base case
• It is a self-contained subroutine
• It can return data to its previous call

2

3(b) 1 mark per bullet point to max 3

• (When the recursive call is made) all values/data are put on
• the stack
• When the stopping condition/base case is met
• the algorithm unwinds
• the last set of values are taken off the stack (in reverse order)

3

