
This document consists of 18 printed pages.

© UCLES 2018 [Turn over

Cambridge Assessment International Education
Cambridge International Advanced Subsidiary and Advanced Level

COMPUTER SCIENCE 9608/41
Paper 4 Written Paper October/November 2018

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners’ meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most
Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level
components.

be
st

ex
am

he
lp

.c
om

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 2 of 18

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the
specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these
marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question
• the specific skills defined in the mark scheme or in the generic level descriptors for the question
• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the

scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
• marks are awarded when candidates clearly demonstrate what they know and can do
• marks are not deducted for errors
• marks are not deducted for omissions
• answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the

question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level
descriptors.

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 3 of 18

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may
be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or
grade descriptors in mind.

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 4 of 18

Question Answer Marks

1(a)(i) 1 mark for each correct statement:

• bird(lays_egg).
• bird(has_wings).

2

1(a)(ii) 1 mark for each correct line:

• feature(eagle, lays_eggs).
• feature(eagle, has_wings).

2

1(b)(i) 1 mark for each animal:

tuna, crab

2

1(b)(ii) 1 mark per bullet point:

• feature()
• tuna, C

feature(tuna, C)

2

1(c) 1 mark per bullet point to max 3:

• feature(X,Y) AND bird(Y) // feature(X, has_wings)
• AND
• feature(X,Z) AND bird(Z) // feature(X, lays_eggs)

(feature(X, Y) AND bird(Y)) AND (feature(X, Z) AND bird(Z))

3

1(d)(i) A programming style/classification // characteristics/features that programming language has/uses 1

1(d)(ii) 1 mark for each:

• Low-level
• Imperative // Procedural

2

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 5 of 18

Question Answer Marks

2(a) 1 mark per bullet point to max 4:

• declaration of type Book
• Title, Author and ISBN as String
• Fiction as Boolean
• LastRead as Date

For example:

TYPE Book
 DECLARE Title : String
 DECLARE Author : String
 DECLARE ISBN : String
 DECLARE Fiction : Boolean
 DECLARE LastRead : Date
ENDTYPE

4

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 6 of 18

Question Answer Marks

2(b) 1 mark per bullet point to max 4:

• Function header
• taking ISBN as parameter
• Converting ISBN to integer
• Calculating Hash (ISBN mod 2000 + 1)
• Returning the calculated Hash

Examples:

Python:

def Hash(ISBN):
 ISBNint = int(ISBN)
 Hash = (ISBNint % 2000) + 1

VB.NET:

Function Hash (ISBN As String) As Integer
 ISBNint = convert.toInt32(ISBN)
 Hash = (ISBNint MOD 2000) + 1
End Function

Pascal:

function Hash(ISBN : String) : Integer
 begin
 ISBNint = StrToInt(ISBN)
 Hash = (ISBNint MOD 2000) + 1
 end;

4

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 7 of 18

Question Answer Marks

2(c) 1 mark per bullet point to max 8:

• Procedure FindBook declaration and prompt and input ISBN
• Validate data input has 13 characters
• and are all numeric
• ..loop until valid
• Call Hash() with input data and store return data
• Open MyBooks.dat for reading as random file and close
• Finding the record using return value Hash()
• Get the data for the record
• store in variable of type Book
• output all the data for the record

8

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 8 of 18

Question Answer Marks

2(c) Example:

PROCEDURE FindBook()
 DECLARE BookInfo : Book

 REPEAT
 ISBN ← input("Enter the ISBN number")
 Valid ← TRUE
 Size ← LENGTH(ISBN)
 IF size <> 13
 THEN
 Valid ← FALSE
 ELSE
 FOR i ← 1 to 13
 IF NOT(MID(ISBN,i,1) >= '0' AND MID(ISBN,i,1)<= '9')
 THEN
 Valid ← FALSE
 ENDIF
 ENDFOR
 ENDIF
 UNTIL Valid

 Filename ← "myBooks.dat"
 OPENFILE Filename FOR RANDOM
 RecordLocation ← Hash(ISBN)
 SEEK FileName, RecordLocation
 GETRECORD Filename, BookInfo
 CLOSEFILE Filename
 OUTPUT (BookInfo.Title & " " & BookInfo.Author & " " &
 BookInfo.ISBN & " " & BookInfo.Fiction & " " &
 BookInfo.LastRead)
ENDPROCEDURE

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 9 of 18

Question Answer Marks

3(a) • LIFO / last in first out 1

3(b)(i) Points to the next free space on the stack 1

3(b)(ii) 1 mark per bullet to max 3

• Correct stack contents
• StackPointer = 4

 StackPointer 4 StackContents

 0 "Screw 1"

 1 "Screw 2"

 2 "Back case"

 3 "Light 1"

 4

 5

 6

 7

2

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 10 of 18

Question Answer Marks

3(c)(i) 1 mark for each correct statement:

PROCEDURE POP
 IF StackPointer = 0
 THEN
 OUTPUT ("The stack is empty")
 ELSE
 StackPointer ← StackPointer - 1
 OUTPUT Parts[StackPointer]
 Parts(StackPointer) ← "*"
 ENDIF
ENDPROCEDURE

5

3(c)(ii) 1 mark for each completed statement:

PROCEDURE PUSH (BYVALUE Value : String)
 IF StackPointer > 19
 THEN
 OUTPUT "Stack full"
 ELSE
 Parts[StackPointer] ← Value
 StackPointer ← StackPointer + 1
 ENDIF
ENDPROCEDURE

4

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 11 of 18

Question Answer Marks

4(a)(i) A function/subroutine defined in terms of itself // a function/subroutine that calls itself 1

4(a)(ii) 06 1

4(b) 1 mark for each bullet point:

• –60 as final return value
• 3*2*1*–10

1 mark for each row in table

Call Number Function call Number = 0 ? Return value

1 Calculate(3) False 3*Calculate(2)

2 Calculate(2) False 2*Calculate(1)

3 Calculate(1) False 1*Calculate(0)

4 Calculate(0) TRUE –10

6

4(c)(i) 1 mark per bullet point:

• Each time it calls itself the variables are put onto the stack // The function call itself too many times
• it runs out of stack space // stack overflow

2

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 12 of 18

Question Answer Marks

4(c)(ii) 1 mark per bullet point to max 5:

• Function header with parameter and Returning calculated value
• Loop parameter times (up to number, or down from number)
• Multiplying by loop counter
• Multiplying by –10
• Dealing with starting value correctly

For example:

FUNCTION Calculate(Number : INTEGER) RETURNS INTEGER
 DECLARE Count : INTEGER
 DECLARE Value : INTEGER
 Value ← −10
 FOR Count ← 1 to Number
 Value ← Value * Count
 ENDFOR

 RETURN Value
ENDFUNCTION

5

Question Answer Marks

5(a) 1 mark per bullet point to max 2:

• To restrict direct access to the property to the class // keep the properties secure // So the data can only be accessed

by its methods // makes the program more robust
• To make the program easier to debug
• To ensure data going in is valid // to stop invalid changes // stop accidental changes

2

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 13 of 18

Question Answer Marks

5(b) 1 mark per bullet point:

• Constructor method header taking 2 parameters (with correct data types if given)
• Checking if Number > = 0 and < = 9
• Checking theShape is ‘square’ or ‘triangle’ or ‘circle’
• if both valid assigning Number and Shape the parameters
• if either invalid report error (output/returning value/catching error)

5

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 14 of 18

Question Answer Marks

5(b) Examples:

Python

def __init__(self, Num, theShape):
 if (Num >= 0 and Num <= 9) and (theShape = "square" or theShape = "triangle" or
theShape = "circle”) :
 self. __Number = Num
 self.__Shape = TheShape
 else
 print("Error")
 endif

VB.NET

Public Sub New(Num As Integer, theShape As String)
 IF (Num >= 0 and Num <= 9) and (theShape = "square" or theShape = "triangle" or
theShape = "circle") THEN
 Number = Num
 Shape = theShape
 ELSE
 Console.WriteLine("Error")
 ENDIF
End Sub

Pascal

constructor Cards.Create(Num : Integer, theShape : String);
begin
If (Num >= 0 and Num <= 9) and (theShape = "square" or theShape = "triangle" or theShape =
"circle")
 Number := Num;
 Shape := theShape;
 Else
 Writeln("Error") ;
end;

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 15 of 18

Question Answer Marks

5(c) 1 mark per bullet point to max 2:

• Function declaration for GetNumber
• Returning Number

Examples:

Python

def GetNumber():
 return(self.__Number)

VB.NET

Public Function GetNumber() As Integer
 Return(Number)
End Function

Pascal

function Cards.GetNumber() : Integer;
begin
 GetNumber := Number;
end;

2

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 16 of 18

Question Answer Marks

5(d) 1 mark per bullet point to max 2:

• Assigning to OneS and correct instantiation
• Correct parameter values

Examples:

Python

OneS = Cards(1, "square")

VB.NET

Dim OneS As New Cards(1, "square")
or
Dim OneS As Cards = New Cards(1, "square")
or
OneS = New Cards(1, "square")

Pascal

var OneS : Cards;
OneS := Cards.Create(1, "square")

2

5(e) 1 mark per bullet point:

• function declaration (returning integer) and taking 2 cards as parameter
• comparison of Number and Shape
• if the same output ‘SNAP’ and return –1
• Compare Number of each to find highest and return the highest number
• return either number if the same
• correct use of .GetNumber() and .GetShape()throughout

6

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 17 of 18

Question Answer Marks

5(e) Examples:

Python

def Compare(P1Card, P2Card):
 if P1Card.GetNumber() = P2Card.GetNumber() AND
 P1Card.GetShape() = P2Card.GetShape():
 Print("SNAP")
 return -1
 elif P2Card.GetNumber() > P1Card.GetNumber():
 return P2Card.GetNumber()
 else:
 return P1Card.GetNumber()

VB.NET

Function Compare(P1Card As Cards, P2Card As Cards) As Integer
 IF P1Card.GetNumber() = P2Card.GetNumber()AND
 P1Card.GetShape() = P2Card.GetShape()THEN

 Console.writeline("SNAP")
 Return -1
 ELSEIF P2Card.GetNumber() > P1Card.GetNumber() THEN
 P2Card.GetNumber()
 ELSE
 Return P1Card.GetNumber()
 ENDIF
End Function

9608/41 Cambridge International AS/A Level – Mark Scheme
PUBLISHED

October/November 2018

© UCLES 2018 Page 18 of 18

Question Answer Marks

5(e) Pascal

function Compare(P1Card : Cards, P2Card : Cards) : Integer;
begin
 if P1Card.GetNumber() = P2Card.GetNumber()AND
 P1Card.GetShape() = P2Card.GetShape() then
 writeline("SNAP");
 return −1;
 else if P2Card.GetNumber() > P1Card.GetNumber() then
 return P2Card.GetNumber();
 else
 return P1Card.GetNumber();
end;

