oEloitelely Cambridge International Examinations

ERENNEN Cambridge International Advanced Subsidiary and Advanced Level
AS & A Level

CANDIDATE

NAME

CENTRE CANDIDATE
NUMBER NUMBER

COMPUTER SCIENCE
Paper 4 Further Problem-solving and Programming Skills

Candidates answer on the Question Paper.
No Additional Materials are required.

No calculators allowed.

9608/42

May/June 2017

2 hours

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.
No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This document consists of 17 printed pages and 3 blank pages.

¥ International Examinations

DC (CW/SW) 129963/3
© UCLES 2017

[Turn over

bestexamhelp.com

2

1 The following table shows part of the instruction set for a processor which has one general purpose
register, the Accumulator (ACC), and an Index Register (1X).

Instruction
Explanation
Op code Operand
LDM | #n Immediate addressing. Load the number n to ACC.
LDD | <address> | Direct addressing. Load the contents of the location at the given address
to ACC.
LDl | <address> | Indirect addressing. The address to be used is at the given address.
Load the contents of this second address to ACC.
LDX | <address> | Indexed addressing. Form the address from <address> + the contents of
the index register. Copy the contents of this calculated address to ACC.
STO | <address> | Store the contents of ACC at the given address.
INC | <register>| Add 1 to the contents of the register (ACC or IX).
CMP | <address> | Compare the contents of ACC with the contents of <address>.
JMP | <address> | Jump to the given address.
JPE | <address> | Following a compare instruction, jump to <address> if the compare was
True.
JPN | <address> | Following a compare instruction, jump to <address> if the compare was
False.
AND | <address> | Bitwise AND operation of the contents of ACC with the contents of
<address>.
XOR | <address> | Bitwise XOR operation of the contents of ACC with the contents of
<address>.
OR | <address> | Bjtwise OR operation of the contents of ACC with the contents of
<address>.
IN Key in a character and store its ASCII value in ACC.
ouT Output to the screen the character whose ASCII value is stored in ACC.
END Return control to the operating system.

(&) A programmer writes a program that:

© UCLES 2017

reads two characters input from the keyboard (you may assume they will be capital
letters in ascending alphabetical sequence)

outputs the alphabetical sequence of characters from the first to the second character.
For example, if the characters ‘B’ and ‘F’ are input, the output is:

BCDEF

9608/42/M/3/17

3

The programmer has started to write the program in the following table. The Comment column
contains descriptions for the missing program instructions, labels and data.

Complete the following program. Use op codes from the given instruction set.

Label cchi)e Operand Comment
START: // INPUT character
// store in CHAR1
// INPUT character
// store in CHAR2
// initialise ACC to ASCII value of CHAR1
// output contents of ACC
// compare ACC with CHAR2
// it equal jump to end of FOR loop
// increment ACC
// jump to LOOP
ENDFOR: | END
CHAR1:
CHAR2:

[9]
(b) The programmer now starts to write a program that:
e converts a positive integer, stored at address NUMBER1, into its negative equivalent in
two’s complement form

] stores the result at address NUMBER2

Complete the following program. Use op codes from the given instruction set.
Show the value stored in NUMBER2.

Label nge Operand Comment
START:
MASK // convert to one"s complement
// convert to two"s complement
END
MASK: // show value of mask in binary here
NUMBER1: | BOOO00101 // positive integer
NUMBER2: // negative equivalent

[6]

© UCLES 2017 9608/42/M/3/17 [TU rn over

4
2 An ordered binary tree Abstract Data Type (ADT) has these associated operations:
* create tree
* add new item to tree
e traverse tree
The binary tree ADT is to be implemented as a linked list of nodes.
Each node consists of data, a left pointer and a right pointer.

(@) Anull pointer is shown as Q.

Explain the meaning of the term null pointer.

... [1]
(b) The following diagram shows an ordered binary tree after the following data have been
added:
Dublin, London, Berlin, Paris, Madrid, Copenhagen
RootPointer
~
| | Dublin
@ | Berlin \ @ | London \
@ [Copenhagen| @ /| Paris | @
@ | Madrid | @
Another data item to be added is Athens.
Make the required changes to the diagram when this data item is added. [2]

© UCLES 2017 9608/42/M/3/17

(c) Atree without any nodes
is represented as:

RootPointer

%

5

Unused nodes are linked together into a free list
as shown:

FreePointer

\\
N %)
%
%)
1] 1]

The following diagram shows an array of records that stores the tree shown in part (b).

(i) Add the relevant pointer values to complete the diagram.

RootPointer

0

FreePointer

© UCLES 2017

O]
[1]
[2]
(31
[4]
[5]
[€]
[7]
[8]
[°]

LeftPointer

Tree data

RightPointer

Dublin

London

Berlin

Paris

Madrid

Copenhagen

Athens

9608/42/M/3/17

[5]

[Turn over

6

(i) Give an appropriate numerical value to represent the null pointer for this design. Justify
your answer.

(d) A program is to be written to implement the tree ADT. The variables and procedures to be
used are listed below:

Identifier Data type Description

Node RECORD Da_ta structure to store node data and associated
pointers.

LeftPointer INTEGER Stores index of start of left subtree.

RightPointer INTEGER Stores index of start of right subtree.

Data STRING Data item stored in node.

Tree ARRAY Array to store nodes.

NewDatal tem STRING Stores data to be added.

FreePointer INTEGER Stores index of start of free list.

RootPointer INTEGER Stores index of root node.

NewNodePointer INTEGER Stores index of node to be added.

CreateTree() Proc_edure initialises the root_ pointer and free pointer
and links all nodes together into the free list.

AddToTree) Progedure to ad_d a new data item in the correct
position in the binary tree.
Procedure that finds the node where a new node is
to be added.
Procedure takes the parameter NewDatal tem and

. , . returns two parameters:
FindInsertionPoint() J Index, whose value is the index of the node
where the new node is to be added
J Direction, whose value is the direction of the
pointer (“Left” or “Right”).

© UCLES 2017 9608/42/M/3/17

7
(i) Complete the pseudocode to create an empty tree.

TYPE Node

ENDTYPE
DECLARE Tree : ARRAY[LO = O .ot
DECLARE FreePointer : INTEGER

DECLARE RootPointer : INTEGER

PROCEDURE CreateTree()

DECLARE Index : INTEGER

FOR Index <— O TO 9 // link nodes

ENDPROCEDURE [7]

© UCLES 2017 9608/42/M/3/17 [TU rn over

8
(i) Complete the pseudocode to add a data item to the tree.
PROCEDURE AddToTree(BYVALUE NewDataltem : STRING)
// if no free node report an error
] e e =T oo | ol =T TP PPPPP P PPPP
THEN
OUTPUT('No free space left')
ELSE // add new data item to first node in the free list
NewNodePointer < FreePointer
// adjust free pointer
FreEPOINEEN <= e
// clear left pointer
Tree[NewNodePointer].LeTtPOINTEr <= ..o

// 1s tree currently empty ?

ELSE // find position where new node is to be added
Index < RootPointer
CALL FindInsertionPoint(NewDataltem, Index, Direction)
IF Direction = "Left"
THEN // add new node on left
ELSE // add new node on right
ENDIF
ENDIF
ENDIF

ENDPROCEDURE [8]

© UCLES 2017 9608/42/M/3/17

9

(e) The traverse tree operation outputs the data items in alphabetical order. This can be written
as a recursive solution.

Complete the pseudocode for the recursive procedure TraverseTree.

PROCEDURE TraverseTree(BYVALUE Pointer : INTEGER)

ENDPROCEDURE 5]

© UCLES 2017 9608/42/M/3/17 [TU rn over

10

3 A programmer is writing a treasure island game to be played on the computer. The island is
a rectangular grid, 30 squares by 10 squares. Each square of the island is represented by an
element in a 2D array. The top left square of the island is represented by the array element [0, 0].
There are 30 squares across and 10 squares down.

The computer will:

* generate three random locations where treasure will be buried
e prompt the player for the location of one square where the player chooses to dig
* display the contents of the array by outputting for each square:

— " ._" foronly sand in this square

— "T*" for treasure still hidden in sand

— "X* for a hole dug where treasure was found

— "0" for a hole dug where no treasure was found.

Here is an example display after the player has chosen to dig at location [9, 3]:

The game is to be implemented using object-oriented programming.

The programmer has designed the class IslandClass. The identifier table for this class is:

Identifier Data type Description

2D array to represent the

Grid ARRAY[O = 9, 0 : 29] OF CHAR squares of the island

instantiates an object of class
Constructor() IslandClass and initialises
all squares to sand

generates a pair of random
numbers used as the grid
location of treasure and
marks the square with *T*

HideTreasure()

takes as parameters a valid
grid location and marks the
square with *X* or 0" as

appropriate

DigHole(Row, Column)

takes as parameter a valid
grid location and returns the
GetSquare(Row, Column) | CHAR grid value for that square
from the IslandClass
object

© UCLES 2017 9608/42/M/3/17

11

(@) The programmer designed the pseudocode for the main program as follows:

DECLARE Island : IslandClass.Constructor() // instantiate object
CALL DisplayGrid(Q) // output island squares
FOR Treasure < 1 TO 3 // hide 3 treasures

CALL Island.HideTreasure()

ENDFOR
CALL StartDig(Q) // user to input location of dig
CALL DisplayGrid() // output island squares

Write program code to implement this pseudocode.
Programming [anNgUAge USEAcuuuiiiiiiiiiiiiiiiiiiss e et e e e e e e e et s s e e e e e e eeeatn s e e eeeeaennes

Program COUEooiiiiiii i

© UCLES 2017 9608/42/M/3/17 [TU rn over

12
(b) Write program code to declare the IslandClass and write the constructor method.
The value to represent sand should be declared as a constant.
Programming 1aNQUAGE USEAuuiiiiiiiiiiiiiiiii et e e e e
Program COAE ...

© UCLES 2017 9608/42/M/3/17

13

(c) The procedure DisplayGrid shows the current grid data. DisplayGrid makes use of the
getter method GetSquare of the Island class.

An example output is:

© UCLES 2017 9608/42/M/3/17 [TU rn over

14

(d) Write program code for the HideTreasure method. Your method should check that the
random location generated does not already contain treasure.

The value to represent treasure should be declared as a constant.
Programming language USEd ...,
L T0T =T o 11 o7 Yo [PSP

© UCLES 2017 9608/42/M/3/17

15

(e) (i) The DigHolle method takes two integers as parameters. These parameters form a valid
grid location. The location is marked with *X*® or "0~ as appropriate.

Write program code for the DigHole method. The values to represent treasure, found
treasure and hole should be declared as constants.

Programming lanQUAQgE USEAuuuuuuuiiuuiriiiiiiiiuierrrssresssssssssssssssseessssseerserreeee———————————.
PrOQram COUE ...ttt e e e s et e e e e e e e e e e e e e e nnneees

© UCLES 2017 9608/42/M/3/17 [TU rn over

16

(i) The StartDig procedure:
e prompts the player for a location to dig
e validates the user input
e calls the DigHole method from part (e)(i).

Write program code for the StartDig procedure. Ensure that the user input is fully
validated.

Programming [aNQUAGE USEAcociiiiiiiiiiiiiii et

Program code

© UCLES 2017 9608/42/M/3/17

17

(fy (i) The squares in the IslandClass grid could have been declared as objects of a
Square class.

State the term used to describe the relationship between IslandClass and Square.

(i) Draw the appropriate diagram to represent this relationship. Do not list the attributes and
methods of the classes.

2]

© UCLES 2017 9608/42/M/3/17

18

BLANK PAGE

© UCLES 2017 9608/42/M/3/17

19

BLANK PAGE

© UCLES 2017 9608/42/M/3/17

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2017 9608/42/M/3/17

