SRR Cambridge International Examinations
WCBEEIEY Cambridge International Advanced Level

A Level

CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER

COMPUTER SCIENCE

9608/42

Paper 4 Further Problem-solving and Programming Skills October/November 2016

Candidates answer on the Question Paper.
No Additional Materials are required.
No calculators allowed.

2 hours

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.
No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This document consists of 17 printed pages and 3 blank pages.

1 CAMBRIDGE

DC (LEG/SW) 115870/4 o
) International Examinations

© UCLES 2016

[Turn over

bestexamhelp.com

2
1 The ticket machine in the following diagram accepts the following coins: 10, 20, 50 and 100 cents.
The ticket machine has:
* aslotto insert coins
e atray to return coins
» aticket dispenser

. two buttons:

o button A (Accept)
o button C (Cancel)

Coin Slot ~__|

Coin
return Ticket dispenser
tray

When the user has inserted as many coins as required, they press button A to print the ticket.
To cancel the transaction, the user can press button C. This makes the machine return the coins.

Invalid coins have no effect.

© UCLES 2016 9608/42/0/N/16

3

The following state transition table shows the transition from one state to another of the ticket

machine:

Current state Event Next state
Idle Coin inserted Counting
Counting Coin inserted Counting
Counting Button C pressed Cancelled
Cancelled Coins returned Idle
Counting Button A pressed Accepted
Accepted Ticket printed Idle

(@) Complete the state-transition diagram.

© UCLES 2016

Coin inserted

Cancelled

9608/42/0/N/16

[7]

[Turn over

4

(b) A company wants to simulate the use of a ticket machine. It will do this with object-oriented
programming (OOP).

The following diagram shows the design for the class TicketMachine. This includes its
attributes and methods.

TicketMachine
Amount : INTEGER // total value of coins inserted in cents
State : STRING // ""ldle', "Counting"™, 'Cancelled”
// or "Accepted”
Create() // method to create and initialise an object
// if using Python use _ init__
SetState() // set state to parameter value
// and output new state
StateChange() // insert coin or press button,

// then take appropriate action
Coinlnserted() // parameter is a string

// change parameter to integer

// and add coin value to Amount
ReturnCoins() // output Amount, then set Amount to zero
PrintTicket() // print ticket, then set Amount to zero

Write program code for the following methods.

Programming lanNQUAGEooeiieiiiii e

(i) Create(Q

© UCLES 2016 9608/42/0/N/16

(iii) ReturnCoins()

.. [2]
(iv) Each coin inserted must be one of the following: 10, 20, 50 or 100 cents.

Write program code for a function ValidCoin(s : STRING) that returns:

e TRUE if the input string is one of "'10'", '20", '50" or ""100"

* FALSE otherwise

Programming [ANQUAGEccoiiiiiiiiiiie et e e e e

... [3]
(v) Write program code for the method Coinlnserted()

... [2]

© UCLES 2016 9608/42/0/N/16 [Turn over

6

(vi) Convert the flowchart to program code for the method StateChange().
Use the attributes and methods in the original class definition and the ValidCoin()

function from part (iv).
CI\/ETHOD St at eChange>
/I NPUT Newl nput /

Yes

|ls State =

CALL Set State("Cancel |l ed")

"Counting"?

Is New nput = 'C ?

v

CALL Ret urnCoi ns()

v

I's Newl nput = "'A ?

QUTPUT " No
coins inserted"

CALL Set State("Accepted")

—» | CALL PrintTicket ()

I's Newl nput

CALL Coi nl nserted(New nput)

A 4

a valid
coi n?

v

CALL SetState("Idle")

CALL Set State("Counting")

not a valid

QUTPUT "Error -
coi n"

=)

9608/42/0/N/16

© UCLES 2016

© UCLES 2016 9608/42/0/N/16 [Turn over

8
(vii) The company needs to write a program to simulate a parking meter. The program
will create an object with identifier ParkingMeter, which is an instance of the class
TicketMachine.
The main program design is:
instantiate ParkingMeter (create and initialise ParkingMeter)
loop forever (continually use ParkingMeter)
call StateChange() method
end loop

Write program code for the main program.

Programming [ANQUAGEcoooiuiiiiiiiiiee et e e e e e r e e e e e e anne

© UCLES 2016 9608/42/0/N/16

9
(c) Itis possible to declare attributes and methods as either public or private.

A programmer has modified the class design for TicketMachine as follows.

TicketMachine

PRIVATE

Amount : INTEGER

State : STRING
PUBLIC

Create()

StateChange()
PRIVATE

SetState()

Coinlnserted()

ReturnCoins()

PrintTicket()

(i) Describe the effects of declaring the TicketMachine attributes as private.

(i) Describe the effects of declaring two methods of the class as public and the other four as
private.

© UCLES 2016 9608/42/0/N/16 [Turn over

10
2 Commercial software usually undergoes alpha testing and beta testing.
Distinguish between the two types of testing by stating:
e who does the testing
« when the testing occurs

» the specific purpose of each type of testing

(i) Alpha testing

(i) Beta testing

3 (a) The numerical difference between the ASCII code of an upper case letter and the ASCII code
of its lower case equivalent is 32 denary (32,).

For example, "F* has ASCII code 70 and " " has ASCII code 102.

Bit number

7/6 /54|32 |1]0

ASCII code ASCII code in binary
70 o0j12,0,0]0|2 1,0
102 0j1,1,0]0|2 1,0

The bit patterns differ only at bit number 5. This bit is 1 if the letter is lower case and O if the
letter is upper case.

© UCLES 2016 9608/42/0/N/16

11
(i) A program needs a mask to ensure that a letter is in upper case.

Write the binary pattern of the mask in the space provided in the table below.

Bit number
7|16 5143|210
ASCII code ASCII code in binary
70 oj1/0/0|0|2]|1]|O
102 of1|]1/]0,0 110
Mask

Give the bit-wise operation that needs to be performed using the mask and the
ASCII code.

(i) A program needs a mask to ensure that a letter is in lower case.

Write the binary pattern of the mask in the space provided in the table below.

Bit number
7/6 5143|210
ASCII code ASCII code in binary
70 0/1,0]0]0|2 1|0
102 o110, 0 110
Mask

Give the bit-wise operation that needs to be performed using the mask and the
ASCII code.

© UCLES 2016 9608/42/0/N/16 [Turn over

12

The following table shows part of the instruction set for a processor which has one general
purpose register, the Accumulator (ACC), and an index register (1X).

Instruction
Op Operand Explanation
code
LDM | #n Immediate addressing. Load the number n to ACC.

Direct addressing. Load the contents of the given address to

LDD | <address> ACC.

Indexed addressing. Form the address from <address> +
LDX | <address> the contents of the index register. Copy the contents of this
calculated address to ACC.

LDR | #n Immediate addressing. Load the number n into IX.

STO | <address> Store the contents of ACC at the given address.

INC | <register> Add 1 to the contents of the register (ACC or 1X).

CMP | <address> Compare the contents of ACC with the contents of <address>.
CMP | #n Compare the contents of ACC with number n.

Following a compare instruction, jump to <address> if the

JPE | <address>
compare was True.

Following a compare instruction, jump to <address> if the

JPN | <address>
compare was False.

Bitwise AND operation of the contents of ACC with the

AND | #n
operand.

Bitwise AND operation of the contents of ACC with the

AND | <address>
address contents of <address>.

Bitwise XOR operation of the contents of ACC with the

XOR | #n
operand.

Bitwise XOR operation of the contents of ACC with the

XOR | <address>
contents of <address>.

OR | #n Bitwise OR operation of the contents of ACC with the operand.

Bitwise OR operation of the contents of ACC with the contents

R < >
0 address of <address>.

Output to the screen the character whose ASCII value is

ouT stored in ACC.

END Return control to the operating system.

A programmer is writing a program that will output the first character of a string in upper case and
the remaining characters of the string in lower case.

The program will use locations from address WORD onwards to store the characters in the string.
The location with address LENGTH stores the number of characters that make up the string.

© UCLES 2016 9608/42/0/N/16

13

The programmer has started to write the program in the following table. The comment column
contains descriptions for the missing program instructions.

(b) Complete the program using op codes from the given instruction set.

Label

Op
code

Operand

Comment

START:

/7/

initialise index register to zero

//

get first character of WORD

//

ensure It Is In upper case using MASK1

//

output character to screen

/7/

increment index register

/7/

load 1 into ACC

//

store in COUNT

LOOP:

//

load next character from indexed address WORD

/7/

make lower case using MASK2

/7/

output character to screen

//

increment COUNT starts here

/7/

is COUNT = LENGTH ?

/7/

if FALSE, jump to LOOP

//

end of program

COUNT :

MASK1:

/7/

bit pattern for upper case

MASK2:

/7/

bit pattern for lower case

LENGTH:

4

WORD:

B01100110

//

ASCII code in binary for "f*

B01110010

//

ASCII code in binary for °r

B01000101

/7/

ASCII code in binary for “E-

B01000100

//

ASCII code in binary for "D-

© UCLES 2016

[12]

9608/42/0/N/16 [Turn over

14

Question 4 begins on page 15.

© UCLES 2016 9608/42/0/N/16

15

4 Circle the programming language that you have studied:

Visual Basic (console mode) Python Pascal Delphi (console mode)

(@ (i) Name the programming environment you have used when typing in program code.

© UCLES 2016 9608/42/0/N/16 [Turn over

16
(iii) The table shows a module definition for BubbleSort in three programming languages.

Study one of the examples. Indicate your choice by circling A, B or C:

A B C
A) Python
01 | def BubbleSort(SList, Max):
02 NoMoreSwaps = False
03 while NoMoreSwaps == False:
04 NoMoreSwaps = True
05 for 1 in (Max - 1):
06 if SList[i] > SList[i + 1]:
07 NoMoreSwaps = True
08 Temp = SList[1i]
09 SList[1] = SList[i + 1]
10 SList[i + 1] = Temp

B) Pascal/Delphi

01 | PROCEDURE BubbleSort(VAR SList : ARRAY OF INTEGER; Max : INTEGER);
02 | VAR NoMoreSwaps : BOOLEAN; i, Temp : INTEGER;

03 | BEGIN

04 REPEAT

05 NoMoreSwaps := TRUE;

06 FOR i =1 TO (Max — 1)

07 IF SList[i] > SList[i + 1]

08 THEN

09 BEGIN

10 NoMoreSwaps := TRUE;
11 Temp := SList[1];

12 SList[i1] := SList[i + 1];
13 SList[i + 1] := Temp;
14 END;

15 UNTIL NoMoreSwaps;

16 | END;

C) Visual Basic
01 | Sub BubbleSort(ByRef SList() As Integer, ByVal Max As Integer)

02 Dim NoMoreSwaps As Boolean, i, Temp As Integer
03 Do

04 NoMoreSwaps = True

05 For i : 0 To (Max — 1)

06 IT SList(i) > SList(i + 1) Then
07 NoMoreSwaps = True

08 Temp = SList(1)

09 SList(i) = SList(i + 1)

10 SList(i + 1) = Temp

11 End IFf

12 Next

13 Loop Until (NoMoreSwaps = True)

14 | End Sub

© UCLES 2016 9608/42/0/N/16

17
The programming environment reported a syntax error in the BubbleSort code.
State the lINE NMUMDET ...t s e ees s eeneeseeesnneeneennrnnnnes

Write the correct code for this line.

(b) (i) State whether programs written in your programming language are compiled or
interpreted.

(i) A programmer corrects the syntax error and tests the function. It does not perform as
expected. The items are not fully in order.

State the tYPE OF BITOFN ..ceieeieeeeeeeeeeeeeee e

Write the line number where the error occurs.

... [2]
(iii) State the programming environment you have used when debugging program code.
Name two debugging features and describe how they are used.
PSRRI
2 e e —e e e ——eee e ——eeeeat—eeeeaaat——eeeait—eeeeaa——eeeeaa——eeeeahteeeeaataeeeeaartreeeeaaaeeeeaanrres
... [4]

© UCLES 2016 9608/42/0/N/16

18

BLANK PAGE

© UCLES 2016 9608/42/0/N/16

19

BLANK PAGE

© UCLES 2016 9608/42/0/N/16

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9608/42/0/N/16

