SEIMBUEREY Cambridge International Examinations
WCBEEIEY Cambridge International Advanced Level

A Level

CANDIDATE

NAME

CENTRE CANDIDATE
NUMBER NUMBER

COMPUTER SCIENCE
Paper 4 Further Problem-solving and Programming Skills

Candidates answer on the Question Paper.
No Additional Materials are required.

No calculators allowed.

9608/41
May/June 2015
2 hours

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.
No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

This document consists of 16 printed pages.

1 CAMBRIDGE

DC (LEG/SW) 95224/2 o
) International Examinations

© UCLES 2015

[Turn over

bestexamhelp.com

2
Throughout the paper you will be asked to write either pseudocode or program code.
Complete the statement to indicate which high-level programming language you will use.

oo r=TaalaalTalo R F= TaTo (U= Vo [PP

© UCLES 2015 9608/41/M/J/15

3

1 A turnstile is a gate which is in a locked state. To open it and pass through, a customer inserts
a coin into a slot on the turnstile. The turnstile then unlocks and allows the customer to push the
turnstile and pass through the gate.

After the customer has passed through, the turnstile locks again. If a customer pushes the turnstile
while it is in the locked state, it will remain locked until another coin is inserted.

The turnstile has two possible states: locked and unlocked. The transition from one state to
another is as shown in the table below.

Current state Event Next state
Locked Insert coin Unlocked
Locked Push Locked
Unlocked Attempt to insert coin Unlocked
Unlocked Pass through Locked

Complete the state transition diagram for the turnstile:

[5]

© UCLES 2015 9608/41/M/J/15 [Turn over

4
2 A declarative programming language is used to represent the knowledge base shown below:

01 capital_city(amman).

02 capital_city(beijing).

03 capital _city(brussels).

04 capital _city(cairo).

05 capital_city(london).

06 city_in_country(amman, jordan).

07 city_in_country(shanghai, china).
08 city_in_country(brussels, belgium).
09 city_in_country(london, uk).

10 city_in_country(manchester, uk).

11 country_in_continent(belgium, europe).
12 country_in_continent(china, asia).
13 country_in_continent(uk, europe).
14 city_visited(amman).

15 city_visited(beijing).

16 city visited(cairo).

These clauses have the following meaning:

Clause Explanation
01 Amman is a capital city
06 Amman is a city in the country of Jordan
11 Belgium is a country in the continent of Europe
14 The travel writer visited Amman

(@) More facts are to be included.

The travel writer visited the city of Santiago which is the capital city of Chile, in the continent
of South America.

Write additional clauses to record this.

© UCLES 2015 9608/41/M/J/15

5
(b) Using the variable ThisCountry, the goal
country_in_continent(ThisCountry, europe)
returns
ThisCountry = belgium, uk
Write the result returned by the goal:

city_in_country(ThisCity, uk)

LI =T oSSR
.. [2]
(c) Complete the rule below to list the countries the travel writer has visited.
countries_visited(ThisCountry)
TP PP
.. [4]

© UCLES 2015 9608/41/M/J/15 [Turn over

6

3 A shop gives some customers a discount on goods totalling more than $20.

The discounts are:

» 5% for goods totalling more than $100

* 5% with a discount card

e 10% with a discount card and goods totalling more than $100

(a) Complete the decision table.

goods totalling
more than $20

goods totalling
more than $100

Conditions

have discount card Y N Y N Y N

No discount

5% discount

Actions

10% discount

(b) Simplify your solution by removing redundancies.

[4]

goods totalling
more than $20

goods totalling
more than $100

Conditions

have discount card

No discount

5% discount

Actions

10% discount

© UCLES 2015 9608/41/M/J/15

[5]

7
(c) The simplified table produced in part (b) is used as a design for program code.

The following identifier table shows the parameters to be passed to the function Discount.
This function returns the discount amount as an integer.

Identifier Data type
GoodsTotal INTEGER
HasDiscountCard BOOLEAN

Write program code for this function.

Programming lanNQUAGEcooeiieieeeeceeeeee e,

© UCLES 2015 9608/41/M/J/15 [Turn over

8

4 A payroll program is to be written using an object-oriented programming language. An Employee
class is designed. Two subclasses have been identified:
 HourlyPaidEmployee who is paid a monthly wage calculated from their hourly rate of pay
and the number of hours worked during the month
« SalariedEmployee who is paid a monthly wage which is one 12th of their annual salary

(@) Draw an inheritance diagram for these classes.

[3]
(b) The design for the Employee class consists of:

e properties

o EmployeeName

o EmployeelD

o AmountPaidThisMonth
* methods

o SetEmployeeName

o SetEmployeelD

o CalculatePay
Write program code for the class definition of the superclass Employee.
g oY = Vgl g aT] o TN F=V g o U = Vo [
.. [5]

© UCLES 2015 9608/41/M/J/15

9

(c) (i) State the properties and/or methods required for the subclass HourlyPaidEmployee.

(d) Name the feature of object-oriented program design that allows the method CalculatePay
to be declared in the superclass Employee.

© UCLES 2015 9608/41/M/J/15 [Turn over

10

5 Datais stored in the array NameList[1:10]. This data is to be sorted.

(@ (i) Complete the pseudocode algorithm for an insertion sort.

(i)

© UCLES 2015

FOR ThisPointer <— 2 TO ..
// use a temporary variable to store item which is to
// be inserted into its correct location
Temp < NameList[ThisPointer]

Pointer «— ThisPointer — 1

WHILE (NameList[Pointer] > Temp) AND ...
// move list item to next location
NameList[...............occl. T «— NameList[., 1
POINTEr «— .ot

ENDWHILE

// insert value of Temp in correct location
NameLISTEL..ccccoooeiiniiiiiieiee e T —

ENDFOR
[7]

A special case is when NameList is already in order. The algorithm in part (a)(i) is
applied to this special case.

Explain how many iterations are carried out for each of the loops.

9608/41/M/J/15

11
(b) An alternative sort algorithm is a bubble sort:

FOR ThisPointer «— 1 TO 9
FOR Pointer «— 1 TO 9
IF NameList[Pointer] > NameList[Pointer + 1]
THEN
Temp <« NameList[Pointer]
NameList[Pointer] <« NameList[Pointer + 1]
NameList[Pointer + 1] <« Temp
ENDIF
ENDFOR
ENDFOR

(i) Asin part (a)(ii), a special case is when NameList is already in order. The algorithm in
part (b) is applied to this special case.

Explain how many iterations are carried out for each of the loops.

© UCLES 2015 9608/41/M/J/15 [Turn over

12

(i) Rewrite the algorithm in part (b), using pseudocode, to reduce the number of
unnecessary comparisons. Use the same variable names where appropriate.

© UCLES 2015 9608/41/M/J/15

13
6 A gueue Abstract Data Type (ADT) has these associated operations:

e create queue
e additem to queue
e remove item from queue

The queue ADT is to be implemented as a linked list of nodes.
Each node consists of data and a pointer to the next node.
(@) The following operations are carried out:

CreateQueue

AddName (""AlT™)
AddName(*"Jack™)
AddName(*'Ben'™)
AddName (*"Ahmed')
RemoveName

AddName ("'Jatinder'™)
RemoveName

Add appropriate labels to the diagram to show the final state of the queue. Use the space on
the left as a workspace. Show your final answer in the node shapes on the right:

[3]

© UCLES 2015 9608/41/M/J/15 [Turn over

14

(b) Using pseudocode, a record type, Node, is declared as follows:

TYPE Node
DECLARE Name - STRING
DECLARE Pointer : INTEGER
ENDTYPE

The statement
DECLARE Queue : ARRAY[1:10] OF Node
reserves space for 10 nodes in array Queue.

(i) The CreateQueue operation links all nodes and initialises the three pointers that need
to be used: HeadPointer, TailPointer and FreePointer.

Complete the diagram to show the value of all pointers after CreateQueue has been
executed.

Queue
HeadPointer Name Pointer

[1]
[2]
TailPointer 3]
[4]
[5]
FreePointer [6]

[7]

[8]

[°]
[10]

[4]

© UCLES 2015 9608/41/M/J/15

15

(i) The algorithm for adding a name to the queue is written, using pseudocode, as a
procedure with the header:

PROCEDURE AddName(NewName)
where NewName is the new name to be added to the queue.

The procedure uses the variables as shown in the identifier table.

Identifier Data type Description

Queue Array[1:10] OF Node | Array to store node data
NewName STRING Name to be added
FreePointer INTEGER Pointer to next free node in array
HeadPointer INTEGER Pointer to first node in queue
TailPointer INTEGER Pointer to last node in queue
CurrentPointer INTEGER Pointer to current node

PROCEDURE AddName(BYVALUE NewName : STRING)

// Report error if no free nodes remaining

IF FreePointer = 0O
THEN

Report Error

ELSE
// new name placed in node at head of free list
CurrentPointer « FreePointer
Queue[CurrentPointer].Name <« NewName
// adjust free pointer
FreePointer <« Queue[CurrentPointer].Pointer
// if first name in queue then adjust head pointer
IF HeadPointer = 0O

THEN
HeadPointer <« CurrentPointer

ENDIF
// current node is new end of queue
Queue[CurrentPointer].Pointer «— 0
TailPointer < CurrentPointer

ENDIF

ENDPROCEDURE

© UCLES 2015 9608/41/M/J/15 [Turn over

16

Complete the pseudocode for the procedure RemoveName. Use the variables listed in
the identifier table.

PROCEDURE RemoveName()

// Report error if Queue is empty

OUTPUT QUEUEL ... ettt et e e e e e e e e e e ee e]-Name

// current node i1s head of queue

ENDPROCEDURE
[6]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015 9608/41/M/J/15

