Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level | CANDIDATE
NAME | | | | |-------------------|--|---------------------|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | # 1424651924 ### **COMPUTER SCIENCE** 9608/13 Paper 1 Theory Fundamentals May/June 2015 1 hour 30 minutes Candidates answer on the Question Paper. No Additional Materials are required. No calculators allowed. ### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer **all** questions. No marks will be awarded for using brand names of software packages or hardware. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The maximum number of marks is 75. | (a) | (i) | Using two's complement, show how the following denary numbers could be stored in 8-bit register: | an | |-----|------------|--|-----| | | | 124 | | | | | -77 | 10. | | | (ii) | Convert the two numbers in part (a) (i) into hexadecimal. | [2] | | | | | | | (b) | Bina | ary Coded Decimal (BCD) is another way of representing numbers. | [2] | | | (i) | Write the number 359 in BCD form. | | | | (ii) | Describe a use of BCD number representation. | [1] | | | \ / | Dodnibe a doe of Deb Hamber representation. | | | | | | [2] | **2** Assemblers translate from assembly language to machine code. Some assemblers scan the assembly language program twice; these are referred to as two-pass assemblers. The following table shows five activities performed by two-pass assemblers. Write 1 or 2 to indicate whether the activity is carried out during the first pass or during the second pass. | Activity | First pass or second pass | |---|---------------------------| | any symbolic address is replaced by an absolute address | | | any directives are acted upon | | | any symbolic address is added to the symbolic address table | | | data items are converted into their binary equivalent | | | forward references are resolved | | [5] | 3 | (a) | Give the definition of the terms firewall and authentication. Explain how they can help with the security of data. | |---|-----|---| | | | Firewall | | | | | | | | | | | | | | | | Authentication | | | | | | | | | | | (b) | [3] Describe two differences between data integrity and data security. | | | | | | | | | | | | | | | | [2] | | | (c) | Data integrity is required at the input stage and also during transfer of the data. | | | | (i) State two ways of maintaining data integrity at the input stage. Use examples to help explain your answer. | | | | | | | | | | | | | | | | | | (ii) | State two ways of maintaining data integrity during data transmission. Use examples to help explain your answer. | |------|---| | | | | | | | | | | | | | | | | | מו | 4 (a) There are two types of RAM: dynamic RAM (DRAM) and static RAM (SRAM). Five statements about DRAM and SRAM are shown below. Draw a line to link each statement to the appropriate type of RAM. **Statement** Type of RAM requires data to be refreshed periodically in order to retain the data has more complex circuitry DRAM does not need to be refreshed as the circuit holds the data as long as the power supply is on requires higher power **SRAM** consumption which is significant when used in battery-powered devices used predominantly in cache memory of processors where [5] © UCLES 2015 9608/13/M/J/15 speed is important | (D) | Describe three differences between RAIVI and ROIVI. | |-----|---| | | | | | | | | | | | | | | | | | [3] | | (c) | DVD-RAM and flash memory are two examples of storage devices. | | | Describe two differences in how they operate. | | | | | | | | | | | | | | | [2] | | 5 | (a) | Name and describe three buses used in the von Neumann model. | | | | | | |---|-----|---|--|--|--|--|--| | | | Bus 1 | | | | | | | | | Description | Bus 2 | | | | | | | | | Description | Bus 3 | | | | | | | | | Description | | | | | | | | | | | | | | | | | | [6] | | | | | | | | (b) | The sequence of operations shows, in register transfer notation, the fetch stage of the fetch-execute cycle. | | | | | | | | | 1 MAR ← [PC]
2 PC ← [PC] + 1
3 MDR ← [[MAR]] | | | | | | | | | 4 CIR ← [MDR] | | | | | | | | | [register] denotes contents of the specified register or memory location step 1 above is read as "the contents of the Program Counter are copied to the Memory Address Register" | | | | | | | | | (i) Describe what is happening at step 2. | | | | | | | | | [1] | | | | | | | | | (ii) Describe what is happening at step 3. | [1] | | | | | | | | (iii) | Describe what is happening at step 4. | |-----|-------|---| | | | [1] | | (c) | Des | cribe what happens to the registers when the following instruction is executed: | | | LDD | 35 | | | | | | | | | | (d) | (i) | Explain what is meant by an interrupt. | | | | | | | | | | | | | | | | [2] | | | (ii) | Explain the actions of the processor when an interrupt is detected. | [4] | **6 (a)** Three digital sensors A, B and C are used to monitor a process. The outputs from the sensors are used as the inputs to a logic circuit. A signal, X, is output from the logic circuit: Output, X, has a value of 1 if either of the following two conditions occur: - sensor A outputs the value 1 OR sensor B outputs the value 0 - sensor B outputs the value 1 AND sensor C outputs the value 0 Draw a logic circuit to represent these conditions. (b) Complete the truth table for the logic circuit described in part (a). | Α | В | С | Working Space | Х | |---|---|---|---------------|---| | 0 | 0 | 0 | | | | 0 | 0 | 1 | | | | 0 | 1 | 0 | | | | 0 | 1 | 1 | | | | 1 | 0 | 0 | | | | 1 | 0 | 1 | | | | 1 | 1 | 0 | | | | 1 | 1 | 1 | | | [4] (c) Write a logic statement that describes the following logic circuit. |
 |
 |
 |
 | |------|---|------|---| |
 |
 |
 |
 | | | | | | | | | | | |
 |
• |
 |
 | | | | | | | | | | | |
 |
 |
 |
• | | | | | | | | | | ro | | | | | | Question 7 begins on page 14. 7 The table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC). | Instruction | | | | | |-------------|-----------------------|---|--|--| | Op code | Operand | Explanation | | | | LDD | <address></address> | Direct addressing. Load contents of given address to ACC | | | | STO | <address></address> | Store the contents of ACC at the given address | | | | LDI | <address></address> | Indirect addressing. The address to be used is at the given address. Load the contents of this second address to ACC | | | | LDX | <address></address> | Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC</address> | | | | INC | <register></register> | Add 1 to contents of the register (ACC) | | | | JMP | <address></address> | Jump to the given address | | | | END | | Return control to operating system | | | The diagram shows the contents of the memory. # Main memory | 120 | 0000 1001 | |-----|-----------| | 121 | 0111 0101 | | 122 | 1011 0110 | | 123 | 11100100 | | 124 | 0111 1111 | | 125 | 0000 0001 | | 126 | 0100 0001 | | 127 | 01101001 | | | | | 200 | 1000 1000 | (a) (i) Show the contents of the Accumulator after execution of the instruction: | | | | | | LDD | 121 | | | | | | |------|--|------------|-------------|------------|-------------|-----------|-------------|-----|---|--|--| | | Accumulator: | | | | | | | | | | | | ···\ | | | | | | 6.11 | | ı | | | | | (ii) | Show the contents of the Accumulator after execution of the instruction: | | | | | | | | | | | | | | | I | <u> </u> | LDI | 124 | I | | | | | | | Accumulator: | | | | | | | | | | | | | · | | | | | | | | , | | | | | Explain how you | arrived | at your a | nswer. | •••• | | | | | | | | | | | | | | | | | | | iii) | Show the conter | nts of the | | | | | | | | | | | iii) | Show the conter | nts of the | | | r execution | | | | | | | | iii) | Show the conter | nts of the | | | r execution | on of the | | | 0 | | | | iii) | | | Accumu | lator afte | r execution | on of the | instruction | on: | | | | | iii) | Index Register: | | Accumu | lator afte | r execution | on of the | instruction | on: | | | | | iii) | | | Accumu | lator afte | r execution | on of the | instruction | on: | | | | | iii) | Index Register: Accumulator: | 0 | Accumu
0 | lator afte | r execution | on of the | instruction | on: | | | | | iii) | Index Register: | 0 | Accumu
0 | lator afte | r execution | on of the | instruction | on: | | | | | iii) | Index Register: Accumulator: | 0 | Accumu
0 | lator afte | r execution | on of the | instruction | on: | | | | | iii) | Index Register: Accumulator: | 0 | Accumu
0 | lator afte | r execution | on of the | instruction | on: | | | | **(b)** Trace the assembly language program using the trace table. | LDD | 321 | |-----|---| | INC | | | STO | 323 | | LDI | 307 | | INC | | | STO | 322 | | END | | | 320 | | | | | | (| | | 49 | | | 36 | | | 0 | | | 0 | | | | INC
STO
LDI
INC
STO
END
320
49
36 | Trace table: | Accumulator | Memory address | | | | | | | |-------------|----------------|-----|-----|-----|--|--|--| | | 320 | 321 | 322 | 323 | | | | | | 49 | 36 | 0 | 0 | [6] Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.