UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | BIOLOGY 9700/51 Paper 5 Planning, Analysis and Evaluation October/November 2011 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black ink. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | | | | | |--------------------|--|--|--|--|--| | 1 | | | | | | | 2 | | | | | | | Total | | | | | | This document consists of 8 printed pages. 1 Photosynthesis was investigated in a species of unicellular alga using the apparatus shown in Fig. 1.1. For Examiner's Use Fig. 1.1 Two different strains of the species of alga were tested using a range of different wavelengths of light. - Light of known wavelength was passed through the tube containing algae for two hours. - The light transmission through the suspension and the oxygen concentration were then measured. The results were used to plot the absorption spectrum and the action spectrum for each strain of alga. Fig.1.2 shows these spectra. Fig. 1.2 | (a) | (i) | State the two dependent variables in this investigation. | Fo. | |-----|------|---|-------------| | | | 1 | Exami
Us | | | | 2[2] | | | | (ii) | Apart from temperature and pH, which have little effect, state two variables that should be standardised during this investigation. | | | | | 1 | | | | | 2[2] | | | (b) | (i) | Water with no suspended algae transmits 100% of the light. State how the data to plot the absorption spectrum was obtained. | | | | | | | | | | [1] | | | | (ii) | State the data which would be used to plot the action spectrum. | | | | | [1] | | | | | | | The photosynthetic pigments of the algae were extracted and were separated by two-way chromatography. The pigments were first separated by one solvent and then separated again by a second solvent at right angles to the first solvent. Fig. 1.3. shows the results for the two different strains. Fig. 1.3 | (c) | Using the information in Fig.1.3, suggest why using two different solvents gives a better separation of these pigments than just using one solvent. | | |-----|---|--| | | | | | | | | | | | | | | | | | | [2] | | | | Outline a procedure that a student could use to extract the photosynthetic pigments and obtain these chromatograms. | |---|---| | | | | | | | | | | | | | • | | | | | | | | | • | | | • | | | • | | | • | | | • | | | • | | | • | © UCLES 2011 9700/51/O/N/11 (e) Different photosynthetic pigments absorb different wavelengths of light. For Examiner's Use [Total: 20] Table 1.1 shows some information about the pigments, **P**, **Q**, **R**, **S** and **T**, found in these unicellular algae, including the wavelength of light at which maximum light absorption occurs. Table 1.1 | pigment | wavelength of | Rf value | | | | |---------|---------------|-----------|-----------|--|--| | | light / nm | solvent 1 | solvent 2 | | | | Р | 620 | 0.20 | 0.89 | | | | Q | 545 and 547 | 0.60 | 0.29 | | | | R | 420 and 660 | 0.65 | 0.11 | | | | S | 490 | 0.91 | 0.19 | | | | Т | 430 and 645 | 0.82 | 0.92 | | | $Rf = \frac{\text{distance moved by pigment}}{\text{distance moved by solvent front}}$ One of the strains of algae lacks one of the pigments. Using the information in Table 1.1, Fig. 1.2 and Fig. 1.3: | (i) | identify the strain of alga that lacks one of these pigments and state the letter of the missing pigment | |-------|--| | | [1] | | (ii) | state the evidence that supports your answer to (i). | | | | | | | | | | | | [2] | | (iii) | In water, the shorter the wavelength of light, the deeper it travels. | | | Suggest why it is an advantage to have the pigment that you identified in (i). | | | | | | | | | | | | [1] | 2 A student carried out some investigations into the inheritance of body colour and wing length in the fruit fly, *Drosophila melanogaster*, to test the hypothesis: For Examiner's Use The inheritance of body colour and wing length in fruit flies is controlled by two genes on separate chromosomes. The student carried out three genetic crosses. To carry out each cross the following procedure was used: - male and virgin female adult fruit flies were placed into a breeding unit containing a culture medium for their larvae - after mating and egg laying, the adult fruit flies were removed - newly emerged adult fruit flies were sexed by observing the shape of the last abdominal segment. | (a) | | one method by which it might be controlled. | |-----|-------------|---| | | factor | | | | method of c | control | | | | [2] | | (b) | | ies are about 2.5 mm long. Suggest how the student might have observed ominal segment in order to sex them. | | | | [1] | | | The three c | rosses the student carried out were: | | | cross 1 | pure breeding fruit flies with grey bodies and long wings × pure breeding flies with ebony bodies and short wings | | | cross 2 | the offspring of cross 1 (offspring 1) were crossed with each other | | | cross 3 | offspring 1 × pure breeding flies with ebony bodies and short wings | - male and female pupae were transferred to separate breeding units - the number of newly emerged adult flies in each phenotype was counted. © UCLES 2011 9700/51/O/N/11 #### Table 2.1 | cross | parental phenotypes | | | total
number of
offspring | number of offspring of each phenotypes | | | • | |-------|--|---|--|---------------------------------|--|---|----------|---| | 1 | pure breeding
grey body
long wings | × | pure breeding
ebony body
short wings | 62 | 62 | grey body
long wings | | | | 2 | offspring 1
grey body
long wings | × | offspring 1
grey body
long wings | 75 | 42
15 | grey body
long wings
grey body
short wings | 13
5 | ebony body
long wings
ebony body
short wings | | 3 | offspring 1
grey body
long wings | × | pure breeding
ebony body
short wings | 64 | 15
19 | grey body
long wings
grey body
short wings | 13
17 | ebony body
long wings
ebony body
short wings | | (c) | c) The student concluded that the results of cross 2 showed that the two gene
separate chromosomes. State the evidence for this conclusion. | | | | | | | |-----|--|---|--|--|--|--|--| | | | [1] | | | | | | | (d) | stuc | student used the chi-squared test (χ^2 test) to analyse the results for cross 3 . The dent predicted that the numbers of fruit flies with each phenotype in this cross should n the ratio 1 : 1 : 1. | | | | | | | | (i) | State the null hypothesis for this test. | | | | | | | | | | | | | | | Complete Table 2.2 to calculate the value of χ^2 for the results of **cross 3**. The equation for the calculation of χ^2 is: $$\chi^2 = \sum_{E} \frac{(O-E)^2}{E}$$ O = Observed result E = Expected result ### Table 2.2 | offspring phenotype | 0 | E | (O – E) ²
E | |--------------------------|----|------------|---------------------------| | grey bodies long wings | 15 | | | | grey bodies short wings | 19 | | | | ebony bodies long wings | 13 | | | | ebony bodies short wings | 17 | | | | | | $\chi^2 =$ | | [3] Table 2.3 shows some critical values for chi-squared at four different probability levels. For Examiner's Use ## Table 2.3 | degrees of freedom | probability (p) | | | | | |--------------------|-----------------|------|-------|-------|--| | | 0.10 | 0.05 | 0.01 | 0.001 | | | 1 | 2.71 | 3.84 | 6.64 | 10.83 | | | 2 | 4.61 | 5.99 | 9.21 | 13.82 | | | 3 | 6.25 | 7.82 | 11.34 | 16.27 | | | 4 | 7.78 | 9.49 | 13.28 | 18.46 | | | (iii) | State why the student should look for the critical value at 3 degrees of freedom in this investigation. | |-------|---| | (iv) | State the conclusion from the χ^2 value calculated in part (ii). | | (7) | [Total: 10] | Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.